Feuille de TD n°20

MP Lycée Clemenceau

Février 2025

Complément sur les endomorphismes d'espaces euclidiens

Exercice 1:

Soit u un vecteur unitaire de matrice U dans une base orthonormée \mathcal{B} .

- 1) Montrer que U^tU est la matrice dans \mathcal{B} de la projection orthogonale sur vect(u).
- 2) Trouver la matrice de la symétrie associée.

Exercice 2 : On considère l'endomorphisme de \mathbb{R}^3 de matrice dans la base canonique : $A = \begin{pmatrix} a^2 & ab-c & ac+b \\ ab+c & b^2 & bc-a \\ ac-b & bc+a & c^2 \end{pmatrix}$

avec $(a, b, c) \in \mathbb{R}^3$. Déterminer a, b, c de sorte que f soit une isométrie, et la préciser.

Exercice 3: Comatrice d'une matrice symétrique

Soit $M \in \mathcal{M}_n(\mathbb{R})$ symétrique. Montrer que com(M) est aussi symétrique. La réciproque est-elle vraie?

Exercice 4: Soient p, q deux projecteurs orthogonaux.

- 1) Montrer que $p \circ q \circ p$ est auto-adjoint.
- 2) Montrer que $(\operatorname{Im}(p) + \ker(q)) \stackrel{\perp}{\oplus} (\ker(p) \cap \operatorname{Im}(q)) = E$.
- 3) En déduire que $p \circ q$ est diagonalisable.

Exercice 5 : Soit $A = (a_{ij}) \in \mathcal{M}_n(\mathbb{R})$ symétrique de valeurs propres $\lambda_1, \ldots, \lambda_n$. Montrer que $\sum_{i,j} a_{ij}^2 = \sum_i \lambda_i^2$.

Continuité des fonctions de plusieurs variables

Exercice $\underline{\mathbf{6}}$: Etudier la limite en (0,0) des fonctions définies par les expressions suivantes :

a)
$$f(x,y) = \frac{x \cdot y \cdot (x^2 - y^2)}{x^2 + y^2}$$

c)
$$f(x,y) = \frac{x^2y}{x^4 + y^2}$$

b)
$$f(x,y) = \frac{\sin(x)\sin(y) - \sin(xy)}{x^2 + y^2}$$

d)
$$f(x,y) = \frac{x^2y}{\sqrt{x^4 + y^4}}$$

Exercice 7: Etudier les limites en (0,0) des fonctions suivantes:

a)
$$f(x,y) = \frac{x^3}{y}$$
 b) $f(x,y) = \frac{x+2y}{x^2-y^2}$ c) $f(x,y) = \frac{x^2+y^2}{|x|+|y|}$

Exercice 8 : Soient $f: \mathbb{R} \to \mathbb{R}$ une fonction de classe \mathscr{C}^1 et $F: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par

$$F(x,y) = \begin{cases} \frac{f(x) - f(y)}{x - y} & \text{si } y \neq x \\ f'(x) & \text{si } y = x \end{cases}$$

1

Montrer que la fonction F est continue.