Feuille de TD n°5

MP Clemenceau

Octobre 2022

1 Banque CCP

Exercice 1 :

- 1) Soit $(a, b, p) \in \mathbb{Z}^3$. Prouver que si $p \wedge a = 1$ et $p \wedge b = 1$, alors $p \wedge (ab) = 1$.
- 2) Soit p un nombre premier.
 - (a) Prouver que $\forall k \in [\![1,p-1]\!], \, p$ divise $\binom{p}{k}k!$ puis que p divise $\binom{p}{k}$.
 - (b) Prouver que : $\forall n \in \mathbb{N}, \ n^p \equiv n \mod p$. **Indication** : Procéder par récurrence.
 - (c) En déduire que : $\forall n \in \mathbb{N}, p$ ne divise pas $n \Longrightarrow n^{p-1} \equiv 1 \mod p$.

Exercice 2:

- 1) Énoncer le théorème de Bézout dans \mathbb{Z} .
- 2) Soit a et b deux entiers naturels premiers entre eux. Soit $c \in \mathbb{N}$.

Prouver que : $(a|c \text{ et } b|c) \iff ab|c$.

- 3) On considère le système (S): $\begin{cases} x \equiv 6 \mod(17) \\ x \equiv 4 \mod(15) \end{cases}$ dans lequel l'inconnue x appartient à \mathbb{Z} .
 - (a) Déterminer une solution particulière x_0 de (S) dans \mathbb{Z} .
 - (b) Déduire des questions précédentes la résolution dans \mathbb{Z} du système (S).

2 Groupes

Exercice 3 : Un sous groupe d'un groupe produit $G \times G'$ est-il nécessairement le produit de deux sous groupes de G et G'?

Exercice 4 : Transport de structure

$$\overline{\text{Pour }(x,y)} \in \mathbb{R}^2, \text{ on pose } x \star y = x\sqrt{1+y^2} + y\sqrt{1+x^2}.$$

- 1) Vérifier que $\sqrt{1 + (x \star y)^2} = \sqrt{1 + x^2} \sqrt{1 + y^2} + xy$.
- 2) Montrer que (\mathbb{R}, \star) est un groupe.
- 3) Montrer que l'application sh est un isomorphisme entre $(\mathbb{R}, +)$ et (\mathbb{R}, \star) .

Exercice 5 : Soit (G, *) un groupe et A une partie non vide de G. On suppose que A est finie et stable par *. Montrer que A est un sous-groupe de G.

Exercice 6 : Soit G un groupe fini et H, K deux sous-groupes de G. On considère l'application $\phi H \times K \to G$ définie par $\phi(h, k) = hk$

- 1. Est-ce que ϕ est un morphisme de groupes?
- 2. Soit $z \in HK$, $z = h_0k_0$ avec $h_0 \in H$ et $k_0 \in K$. Montrer que les antécédents de z par ϕ sont les couples $(h_0t, t^{-1}k_0)$ avec $t \in H \cap K$.
- 3. En déduire que : $Card(HK)Card(H \cap K) = Card(H)Card(K)$.
- 4. Montrer que : $(HK \text{ est un sous-groupe de } G) \iff (HK \subset KH) \iff (HK = KH).$

Exercice 7: Sous-groupes d'un groupe cyclique Soit $n \in \mathbb{N}^*$ et $G = \mathbb{Z}/n\mathbb{Z}$. Soit $k \in \mathbb{Z}$ et $d = k \wedge n$.

- 1) Déterminer l'ordre de \overline{k} dans G.
- 2) Montrer que \overline{k} et \overline{d} engendrent le même sous-groupe de G.
- 3) Quels sont tous les sous-groupes de G?

Exercice 8: Groupes d'ordre 6

Déterminer tous les groupes finis de cardinal 6. (on admettra que dans un tel groupe, il existe un élément a d'ordre 2, et un élément b d'ordre 3).

Exercice 9 : Soit (G, .) un groupe cyclique de cardinal n.

Montrer, que pour tout diviseur $d \in \mathbb{N}$ de n, G possède un et un seul sous-groupe de cardinal d.

Exercice 10 : Soit G un ensemble fini muni d'une loi de composition interne *, associative et telle que tous les éléments sont réguliers.

Montrer que (G, *) est un groupe.

Exercice 11 : Soit E =]-1,1[. On définit la loi * par

$$\forall (x,y) \in E^2 \quad x * y = \frac{x+y}{1+xy}$$

Montrer que (E, *) est un groupe abélien isomorphe à $(\mathbb{R}, +)$.

Exercice 12: Soit n un entier supérieur ou égal à 2. Pour tout entier a trouver l'ordre de \overline{a} dans $(\mathbb{Z}/n\mathbb{Z}, +)$.

Exercice 13 : Soit (G, .) un groupe. On considère a et b deux éléments de G d'ordres respectifs p et q.

- 1) On suppose que a et b commutent et que $p \wedge q = 1$. Montrer que ab est d'ordre pq.
- 2) On suppose encore que a et b commutent.
 - a) Montrer que si d est un diviseur de p, il existe un élément d'ordre d.
 - **b)** Montrer qu'il existe un élément d'ordre $p \vee q$.
- 3) a) On ne suppose plus $p \wedge q = 1$. Montrer que ab n'est pas nécessairement d'ordre pq, ni d'ordre $p \vee q$.
 - **b)** Dans $(\mathcal{G}l_2(\mathbb{R}), \times)$, on considère $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}$. Montrer que A et B sont d'ordres finis premiers entre eux, mais que AB est d'ordre infini.

Exercice 14: Soit (G, .) un groupe abélien d'ordre pq, où p et q sont deux nombres premiers distincts.

- 1) Montrer que G est cyclique.
- 2) Donner un exemple dans lequel ce résultat peut tomber en défaut si l'on ne suppose pas que G est abélien.

Exercice 15: Soit (G,.) un groupe d'ordre 2p, avec p premier.

Montrer que G contient un élément d'ordre p.

3 Anneaux

Exercice 16 : Sommes de nombres impairs

Soit $n \in \mathbb{N}$, $n \geq 2$. Montrer que si N est la somme de n nombres impairs consécutifs, alors N n'est pas premier.

Exercice 17 : Petit théorème de Fermat

Soit
$$p \in \mathbb{N}$$
 premier. Montrer que pour $1 \le k \le p-1$, p divise $\binom{p}{k}$.

En déduire que $\forall n \in \mathbb{Z}, n^p \equiv n[p]$.

Exercice 18: Soient $a, b \in \mathbb{Z}$ et $n \in \mathbb{N}^*$. Montrer que : $a \equiv b[n] \Rightarrow a^n \equiv b^n[n^2]$.

Exercice 19: Soit p et q deux entiers naturels non nuls premiers entre eux.

Montrer que $(X-1)(X^{pq}-1)$ est divisible par $(X^p-1)(X^q-1)$.

Exercice 20 : Caractéristique

Soit A un anneau. On appelle caractéristique de A l'ordre de 1 dans le groupe additif (A, +). On suppose A de caractéristique finie, n.

- 1) Montrer que : $\forall x \in A, nx = 0$.
- 2) Si A est intègre, montrer que n est un nombre premier.
- 3) Si A est intègre et commutatif, montrer que $x \mapsto x^n$ est un morphisme d'anneau.

Exercice 21 : On appelle nilradical d'un anneau commutatif $(A, +, \times)$ l'ensemble N formé des éléments nilpotents de A, c'est à dire des $x \in A$ tels qu'il existe $n \in \mathbb{N}$ vérifiant $x^n = 0$.

Montrer que N est un idéal de A.

Exercice 22 : Soit (A, +, .) un anneau commutatif et I un idéal de A.

On note $\sqrt{I} = \{x \in A \mid \exists n \in \mathbb{N}^* \text{ tq } x^n \in I\}$ (radical de I).

- 1) Montrer que \sqrt{I} est un idéal de A.
- **2)** Montrer que $\sqrt{\sqrt{I}} = \sqrt{I}$.
- 3) Montrer que $\sqrt{I \cap J} = \sqrt{I} \cap \sqrt{J}$ et $\sqrt{I+J} \supset \sqrt{I} + \sqrt{J}$.
- 4) Exemple: $A = \mathbb{Z}$, $I = 3648\mathbb{Z}$. Trouver \sqrt{I} .

Exercice 23 : Un idéal I d'un anneau A est dit premier si :

$$\forall (x,y) \in I^2, \qquad xy \in I \Longrightarrow x \in I \text{ ou } y \in I$$

- 1) Quels sont les idéaux premiers de \mathbb{Z} ?
- 2) Montrer que si A est non nul et si tous les idéaux de A sont premiers alors A est un corps.

Exercice 24 : Soit p un nombre premier différent de 2 et de 5.

Montrer que p divise l'un des éléments de l'ensemble $\{1, 11, 111, 1111, ...\}$.

Exercice 25 : Résoudre dans \mathbb{Z}^2 les équations suivantes :

- 1) 95x + 71y = 46
- **2)** 20x 53y = 3

Exercice 26: Une bande de 17 pirates dispose d'un butin composé de N pièces d'or d'égale valeur. Ils décident de se le partager également et de donner le reste au cuisinier (non pirate). Celui ci reçoit 3 pièces. Mais une rixe éclate et 6 pirates sont tués. Tout le butin est reconstitué et partagé entre les survivants comme précédemment; le cuisinier reçoit alors 4 pièces. Dans un naufrage ultérieur, seuls le butin, 6 pirates et le cuisinier sont sauvés. Le butin est à nouveau partagé de la même manière et le cuisinier reçoit 5 pièces. Quelle est alors la fortune minimale que peut espérer le cuisinier lorsqu'il décide d'empoisonner le reste des pirates?

$$\forall ((a,b),(c,d)) \in (\mathbb{Z}/3\mathbb{Z})[i] \quad \left\{ \begin{array}{l} (a,b) + (c,d) = (a+c,b+d) \\ (a,b) * (c,d) = (ac-bd,bc+ad) \end{array} \right.$$

Montrer que ces lois donnent à $(\mathbb{Z}/3\mathbb{Z})[i]$ une structure de corps dont la caractéristique est 3.

Exercice 28 : Soit I un idéal de l'anneau produit $(\mathbb{Z}^2, +, \times)$.

- 1) On pose $I_1 = \{x \in \mathbb{Z}/(x,0) \in I\}$ et $I_2 = \{y \in \mathbb{Z}/(0,y) \in I\}$. Montrer que I_1 et I_2 sont des idéaux de $(Z, +, \times)$.
- 2) Etablir $I = I_1 \times I_2$.
- 3) Conclure que les idéaux de l'anneau $(\mathbb{Z}^2, +, \times)$ sont de la forme $x\mathbb{Z}^2$ avec $x \in \mathbb{Z}^2$.

Polynômes 4

Exercice 29 : Endomorphisme $P \mapsto AP[B]$

Soit $E = \mathbb{K}_3[X]$, $A = X^4 - 1$, $B = X^4 - X$, et φ l'application de E dans E qui à P associe le reste de la division euclidienne de AP par B.

Chercher $\ker(\varphi)$, $\operatorname{Im}(\varphi)$.

Exercice 30 : Calcul de pgcd

Calculer le pgcd de P et Q pour :

a)
$$P = X^4 + X^3 - 3X^2 - 4X - 1$$

 $Q = X^3 + X^2 - X - 1$

c) $P = X^5 - iX^4 + X^3 - X^2 + iX - 1$ $Q = X^4 - iX^3 + 3X^2 - 2iX + 2$

b)
$$P = X^4 - 10X^2 + 1$$

 $Q = X^4 - 4X^3 + 6X^2 - 4X + 1$

Exercice 31 : Coefficients de Bézout

Montrer que les polynômes P et Q suivants sont premiers entre eux. Trouver $U,V\in\mathbb{K}[X]$ tels que UP+VQ=1.

a)
$$P = X^4 + X^3 - 2X + 1$$

 $Q = X^2 + X + 1$

b)
$$P = X^3 + X^2 + 1$$

 $Q = X^3 + X + 1$

Exercice 32 : Soit $P \in \mathbb{K}[X]$. Démontrer que $(P(X) \land P(-X))$ et $(P(X) \lor P(-X))$ sont pairs ou impairs.

Exercice 33 : Lemme de Gauss

Soit $P \in \mathbb{Z}[X]$. On appelle contenu de P le pgcd des coefficients de P (notation : cont(P)).

- 1) Soient $P, Q \in \mathbb{Z}[X]$ avec $\operatorname{cont}(P) = 1$, et R = PQ. Soit p un facteur premier de $\operatorname{cont}(R)$.
 - a) Si p est premier avec le coefficient constant de P, Démontrer que p divise tous les coefficients de Q.
 - b) Si p divise le coefficient constant de P, se ramener au cas précédent.
 - c) En déduire que cont(Q) = cont(R).
- 2) Lorsque $cont(P) \neq 1$, trouver cont(PQ).
- 3) Application : Soit $R \in \mathbb{Z}[X]$, et $P,Q \in \mathbb{Q}[X]$ tels que R = PQ. Montrer qu'il existe $P_1,Q_1 \in \mathbb{Z}[X]$ proportionnels à P et Q et tels que $R = P_1Q_1$.

(c'est-à-dire : un polynôme à coefficients entiers réductible sur $\mathbb Q$ est aussi réductible sur $\mathbb Z$)

5 Avec Python

Exercice 34: Dans tout ce sujet n désigne un naturel non nul.

On note $\varphi(n)$ l'indicatrice d'Euler de n, U_n l'ensemble des racines n-ième de l'unité et U_n^* l'ensemble des racines de l'unité d'ordre exactement n. Enfin, pour $d \in \mathbb{N}^*$, on pose

$$\Phi_d = \prod_{z \in U_d^*} (X - z)$$

1) Écrire en Python la fonction liste(n) qui renvoie

$$\{k \in [1, n] \mid / k \land n = 1\}$$

Écrire la fonction phi(n) qui renvoie $\varphi(n)$ puis sumphi(n) qui renvoie

$$\sum_{d|n} \varphi(d)$$

2) Montrer

$$X^n - 1 = \prod_{d|n} \Phi_d$$

3) Justifier

$$\sum_{d|n} \varphi(d) = n$$

4) Montrer que Φ_n est un polynôme à coefficients entiers.

On pose $Q_n = X^n - 1$ et on choisit p, q, r des nombres premiers vérifiant

$$p < q < r < p + q$$

On pose

$$n = pqr$$
 et $R = \frac{Q_p Q_q Q_r}{X - 1}$

5) Montrer

$$\Phi_n = \frac{Q_n R}{Q_{pq} Q_{qr} Q_{rp}}$$

6) Montrer qu'il existe un polynôme S tel que

$$\Phi_n - R = X^{pq}S$$

7) En déduire que le coefficient de X^r dans Φ_n est égal à -2.

Exercice 35 : Fonction et inversion de Möbius

On appelle fonction de Möbius l'application $\mu: \mathbb{N}^* \to \{-1, 0, 1\}$ définie par

 $\mu(1)=1, \quad \forall n \in \mathbb{N} \setminus \{0,1\} \begin{cases} \mu(n)=(-1)^r \text{ si } n \text{ est le produit de } r \text{ nombres premiers 2 à 2 distincts} \\ \mu(n)=0 \text{ si } n \text{ est divisible par le carr\'e d'un nombre premier} \end{cases}$

- 1) Montrer que μ est une fonction multiplicative, c'est-à-dire : $\mu(1) = 1$ et, si a et b sont premiers entre eux, $\mu(ab) = \mu(a)\mu(b)$.
- 2) On note d|n pour signifier que l'entier naturel d non nul divise $n \in \mathbb{N}^*$. Montrer que

$$\forall n \geqslant 2$$
 $\sum_{d|n} \mu(d) = 0$

- 3) Ecrire une fonction Python, mu, de variable n, qui calcule $\mu(n)$. La tester pour $n \in [1, 20]$.
- 4) Soit f une application de \mathbb{N}^* dans \mathbb{R} . On définit pour tout $n \in \mathbb{N}^*$: $g(n) = \sum_{d|n} f(d)$.
 - (a) Ecrire une fonction Python de paramètres f et n qui calcule g(n).
 - (b) Exemple : on considère f définie par $f: n \mapsto n^3 2n 1$. Calculer, pour $n \in [1, 20]$, $\sum_{d|n} \mu(d) g\left(\frac{n}{d}\right)$ et f(n).
 - (c) Montrer le résultat qui apparait.

6 Polynômes

Exercice 36: Endomorphisme $P \mapsto AP[B]$

Soit $E = \mathbb{K}_3[X]$, $A = X^4 - 1$, $B = X^{4} - X$, et φ l'application de E dans E qui à P associe le reste de la division euclidienne de AP par B.

Chercher $\ker(\varphi)$, $\operatorname{Im}(\varphi)$.

Exercice 37 : Calcul de pgcd

Calculer le pgcd de P et Q pour :

a)
$$P = X^4 + X^3 - 3X^2 - 4X - 1$$

 $Q = X^3 + X^2 - X - 1$

b)
$$P = X^4 - 10X^2 + 1$$

 $Q = X^4 - 4X^3 + 6X^2 - 4X + 1$

c)
$$P = X^5 - iX^4 + X^3 - X^2 + iX - 1$$

 $Q = X^4 - iX^3 + 3X^2 - 2iX + 2$

Exercice 38 : Montrer que les polynômes P et Q suivants sont premiers entre eux. Trouver $U, V \in \mathbb{K}[X]$ tels que UP + VQ = 1.

a)
$$P = X^4 + X^3 - 2X + 1$$

 $Q = X^2 + X + 1$

b)
$$P = X^3 + X^2 + 1$$

 $Q = X^3 + X + 1$

Exercice 39: Soit $P \in \mathbb{K}[X]$. Démontrer que $(P(X) \land P(-X))$ et $(P(X) \lor P(-X))$ sont pairs ou impairs.

Exercice 40 : Soient $n \in \mathbb{N}$, et $t_0, t_1, ..., t_n$ n+1 réels 2 à 2 distincts. On note $L_0, L_1, ..., L_n$ les polynômes de Lagrange associés.

5

- 1) Pour $p \leq n$, exprimer le polynôme X^p en fonction de $L_0, L_1, ..., L_n$. En déduire la valeur de $\sum_{j=0}^n t_j^p L_j(0)$.
- 2) Trouver un polynôme P de degré n tel que $\forall j \in \{0, 1, ..., n\}$, $P(t_j) = t_j^{n+1}$. En déduire la valeur de $\sum_{j=0}^{n} t_j^{n+1} L_j(0)$.

7 Avec Python

Exercice 41: Dans tout ce sujet n désigne un naturel non nul.

On note $\varphi(n)$ l'indicatrice d'Euler de n, U_n l'ensemble des racines n-ième de l'unité et U_n^* l'ensemble des racines de l'unité d'ordre exactement n. Enfin, pour $d \in \mathbb{N}^*$, on pose

$$\Phi_d = \prod_{z \in U_d^*} (X - z)$$

1) Écrire en Python la fonction liste(n) qui renvoie

$$\{k \in [1, n] / k \land n = 1\}$$

Écrire la fonction phi(n) qui renvoie $\varphi(n)$ puis sumphi(n) qui renvoie

$$\sum_{d|n} \varphi(d)$$

2) Montrer

$$X^n - 1 = \prod_{d|n} \Phi_d$$

3) Justifier

$$\sum_{d|n} \varphi(d) = n$$

4) Montrer que Φ_n est un polynôme à coefficients entiers.

On pose $Q_n = X^n - 1$ et on choisit p, q, r des nombres premiers vérifiant

$$p < q < r < p + q$$

On pose

$$n = pqr$$
 et $R = \frac{Q_p Q_q Q_r}{X - 1}$

5) Montrer

$$\Phi_n = \frac{Q_n R}{Q_{pq} Q_{qr} Q_{rp}}$$

6) Montrer qu'il existe un polynôme S tel que

$$\Phi_n - R = X^{pq}S$$

7) En déduire que le coefficient de X^r dans Φ_n est égal à -2.

Exercice 42 : Fonction et inversion de Möbius

On appelle fonction de Möbius l'application $\mu: \mathbb{N}^* \to \{-1,0,1\}$ définie par

$$\mu(1)=1, \quad \forall n\in \mathbb{N}\setminus\{0,1\} \begin{cases} \mu(n)=(-1)^r \text{ si } n \text{ est le produit de } r \text{ nombres premiers 2 à 2 distincts} \\ \mu(n)=0 \text{ si } n \text{ est divisible par le carr\'e d'un nombre premier} \end{cases}$$

1) Montrer que μ est une fonction multiplicative, c'est-à-dire : $\mu(1) = 1$ et, si a et b sont premiers entre eux, $\mu(ab) = \mu(a)\mu(b)$.

6

2) On note d|n pour signifier que l'entier naturel d non nul divise $n \in \mathbb{N}^*$. Montrer que

$$\forall n \geqslant 2 \qquad \sum_{d|n} \mu(d) = 0$$

- 3) Ecrire une fonction Python, mu, de variable n, qui calcule $\mu(n)$. La tester pour $n \in [1, 20]$.
- 4) Soit f une application de \mathbb{N}^* dans \mathbb{R} . On définit pour tout $n \in \mathbb{N}^*$: $g(n) = \sum_{d|n} f(d)$.
 - (a) Ecrire une fonction Python de paramètres f et n qui calcule g(n).
 - (b) Exemple : on considère f définie par $f: n \mapsto n^3 2n 1$. Calculer, pour $n \in [1, 20]$, $\sum_{d|n} \mu(d) g\left(\frac{n}{d}\right)$ et f(n).
 - (c) Montrer le résultat qui apparait.