Feuille de TD n°1

MP Lycée Clemenceau

Septembre 2024

1 Banque CCP

1.1 Suites

Exercice: 43 banque CCINP

Soit $x_0 \in \mathbb{R}$.

On définit la suite (u_n) par $u_0 = x_0$ et, $\forall n \in \mathbb{N}$, $u_{n+1} = \operatorname{Arctan}(u_n)$.

- 1) (a) Démontrer que la suite (u_n) est monotone et déterminer, en fonction de la valeur de x_0 , le sens de variation de (u_n) .
 - (b) Montrer que (u_n) converge et déterminer sa limite.
- 2) Déterminer l'ensemble des fonctions h, continues sur \mathbb{R} , telles que : $\forall x \in \mathbb{R}$, $h(x) = h(\operatorname{Arctan} x)$.

Exercice: 55 banque CCINP Soit a un nombre complexe.

On note E l'ensemble des suites à valeurs complexes telles que :

 $\forall n \in \mathbb{N}, u_{n+2} = 2au_{n+1} + 4(ia - 1)u_n \text{ avec } (u_0, u_1) \in \mathbb{C}^2.$

- 1) (a) Prouver que E est un sous-espace vectoriel de l'ensemble des suites à valeurs complexes.
 - (b) Déterminer, en le justifiant, la dimension de E.
- 2) Dans cette question, on considère la suite de E définie par : $u_0 = 1$ et $u_1 = 1$.

Exprimer, pour tout entier naturel n, le nombre complexe u_n en fonction de n.

Indication: discuter suivant les valeurs de a.

1.2 Séries

Exercice: 5 banque CCINP

- 1) On considère la série de terme général $u_n = \frac{1}{n(\ln n)^{\alpha}}$ où $n \ge 2$ et $\alpha \in \mathbb{R}$.
 - (a) Cas $\alpha \leq 0$

En utilisant une minoration très simple de u_n , démontrer que la série diverge.

(b) Cas $\alpha > 0$

Étudier la nature de la série.

Indication: On pourra utiliser la fonction f définie par $f(x) = \frac{1}{x(\ln x)^{\alpha}}$.

2) Déterminer la nature de la série $\sum_{n\geqslant 3} \frac{\left(\mathrm{e}-\left(1+\frac{1}{n}\right)^n\right)\mathrm{e}^{\frac{1}{n}}}{\left(\ln(n^2+n)\right)^2}.$

Exercice: 6 banque CCINP

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels strictement positifs et l un réel positif strictement inférieur à 1.

1) Démontrer que si $\lim_{n\to +\infty} \frac{u_{n+1}}{u_n}=l$, alors la série $\sum u_n$ converge.

Indication: écrire, judicieusement, la définition de $\lim_{n\to+\infty}\frac{u_{n+1}}{u_n}=l$, puis majorer, pour n assez grand, u_n par le terme général d'une suite géométrique.

1

2) Quelle est la nature de la série $\sum_{n\geqslant 1} \frac{n!}{n^n}$?

Exercice: 7 banque CCINP

- 1) Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites de nombres réels telles que $(v_n)_{n\in\mathbb{N}}$ est non nulles à partir d'un certain rang.
 - (a) Prouver que si $u_n \sim v_n$ alors u_n et v_n sont de même signe à partir d'un certain rang.
 - (b) Dans cette question, on suppose que (v_n) est positive. Prouver que

 $u_n \underset{+\infty}{\sim} v_n \implies \sum u_n$ et $\sum v_n$ sont de même nature.

2) Étudier la convergence de la série $\sum_{n\geqslant 2}\frac{((-1)^n+i)\ln(n)\sin\left(\frac{1}{n}\right)}{\left(\sqrt{n+3}-1\right)}.$

(i est ici le nombre complexe de carré égal à -1)

Exercice: 8 banque CCINP

- 1) Soit $(u_n)_{n\in\mathbb{N}}$ une suite décroissante positive de limite nulle.
 - (a) Démontrer que la série $\sum (-1)^k u_k$ est convergente.

Indication: on pourra considérer $(S_{2n})_{n\in\mathbb{N}}$ et $(S_{2n+1})_{n\in\mathbb{N}}$ avec $S_n = \sum_{k=0}^n (-1)^k u_k$.

- (b) Donner une majoration de la valeur absolue du reste de la série $\sum (-1)^k u_k$.
- **2)** On pose : $\forall n \in \mathbb{N}^*, \forall x \in \mathbb{R}, f_n(x) = \frac{(-1)^n e^{-nx}}{n}$.
 - (a) Étudier la convergence simple sur \mathbb{R} de la série de fonctions $\sum_{n\geqslant 1}f_n$.
 - (b) Étudier la convergence uniforme sur $[0, +\infty[$ de la série de fonctions $\sum_{n\geq 1} f_n$.

Exercice : 46 banque CCINP On considère la série : $\sum_{n\geqslant 1}\cos\Big(\pi\sqrt{n^2+n+1}\Big)$.

1) Prouver que, au voisinage de $+\infty$, $\pi\sqrt{n^2+n+1}=n\pi+\frac{\pi}{2}+\alpha\frac{\pi}{n}+O\left(\frac{1}{n^2}\right)$ où α est un réel que l'on déterminera.

2

- 2) En déduire que $\sum_{n\geqslant 1}\cos\left(\pi\sqrt{n^2+n+1}\right)$ converge.
- 3) $\sum_{n\geq 1} \cos\left(\pi\sqrt{n^2+n+1}\right)$ converge-t-elle absolument?

2 Suites

Exercice 1: ancien banque CCINP

1) On considère deux suites numériques $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ telles que $(v_n)_{n\in\mathbb{N}}$ est non nulle à partir d'un certain rang et $u_n \underset{+\infty}{\sim} v_n$.

Démontrer que u_n et v_n sont de même signe à partir d'un certain rang.

2) Déterminer le signe, au voisinage de l'infini, de : $u_n = \operatorname{sh}\left(\frac{1}{n}\right) - \tan\left(\frac{1}{n}\right)$.

Exercice 2 : Calculer les limites des suites définies par leur terme général u_n dans les exemples suivants :

a)
$$\frac{n!}{n^n}$$

b)
$$\sqrt{n^2 + n + 1} - n$$

c)
$$\frac{1}{n^{\alpha}} \sqrt[n]{\frac{(2n)!}{n!}}, \alpha \in \mathbb{R}$$

d)
$$\frac{1}{n^3} \sum_{k=1}^{n} k^2$$

e)
$$\frac{1}{n^2} \sum_{k=1}^n \lfloor kx \rfloor, x \in \mathbb{R}$$

$$\mathbf{f)} \ \sum_{k=1}^{n} \frac{n}{n^2 + k}$$

Exercice 3: Soit $(u_n)_{n\in\mathbb{N}}$ une suite complexe. Soit $p\in\mathbb{N}^*$ tel que p>1. On suppose que les suites extraites $(u_{np+k})_{n\in\mathbb{N}}$, avec $k\in[0,p-1]$, sont convergentes et ont toutes la même limite $\ell\in\mathbb{C}$.

Montrer que $(u_n)_{n\in\mathbb{N}}$ est convergente et préciser sa limite. **Exercice 4 :** Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles telles que la suite $(u_n^2 + u_n v_n + v_n^2)_{n\in\mathbb{N}}$ converge

Montrer que les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ convergent vers 0.

Exercice 5 : Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle à termes strictement positifs telle que la suite $\left(\frac{u_{n+1}}{u_n}\right)_{n\in\mathbb{N}}$ converge vers ℓ .

- 1) (a) Montrer que, si $\ell < 1$ alors $u_n \to 0$
 - (b) Montrer que, si $\ell > 1$ alors $u_n \to +\infty$
 - (c) Que peut-on dire si $\ell = 1$?
- 2) *
 - (a) Montrer que la suite $(\sqrt[p]{u_n})_{n\in\mathbb{N}^*}$ converge aussi vers ℓ .
 - (b) Montrer que la réciproque est fausse.
 - (c) Déterminer les limites de $(u_n)_{n\in\mathbb{N}^*}$, où $u_n = \frac{1}{n} \sqrt[n]{\prod_{k=1}^n (2k-1)}$.

Exercice 6: Comparer

$$\lim_{m\to +\infty} \lim_{n\to +\infty} \left(1-\frac{1}{n}\right)^m, \ \lim_{n\to +\infty} \lim_{m\to +\infty} \left(1-\frac{1}{n}\right)^m \ \text{et} \ \lim_{n\to +\infty} \left(1-\frac{1}{n}\right)^n$$

Exercice 7: Pour tout $n \in \mathbb{N}$, on pose

$$S_n = \sum_{k=1}^n \frac{1}{n+k}$$
 et $S'_n = \sum_{k=1}^n \frac{(-1)^{k-1}}{k}$

1) Etablir que pour tout p > 1,

$$\int_{p}^{p+1} \frac{\mathrm{d}x}{x} \leqslant \frac{1}{p} \leqslant \int_{p-1}^{p} \frac{\mathrm{d}x}{x}$$

3

En déduire la limite de (S_n) .

2) Etablir que $S'_{2n} = S_n$. En déduire la limite de (S'_n) .

Exercice 8 : Étudier la convergence de la suite (u_n) définie par :

1)
$$u_0 = a > 1, \forall n \in \mathbb{N} \ u_{n+1} = \frac{1}{2} \left(u_n + \frac{a}{u_n} \right).$$

2) $u_0 = 0, \forall n \in \mathbb{N} \ u_{n+1} = u_n^2 + \alpha.$

3) $u_0 > 0, \forall n \in \mathbb{N} \ u_{n+1} = \alpha^{u_n}$.

Exercice 9: \bigstar

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle, de limite 0.

1) Si on suppose $u_n + u_{n+1} \sim \frac{2}{n}$, a-t-on toujours $u_n \sim \frac{1}{n}$?

2) Montrer que, si on a $u_n + u_{2n} \sim \frac{3}{2n}$, alors $u_n \sim \frac{1}{n}$

Exercice 10: Montrer que les suites suivantes sont adjacentes et leur limite commune est irrationnelle.

$$\forall n \in \mathbb{N} \quad u_n = \sum_{k=0}^{2n+1} \frac{(-1)^k}{(2k)!}, \quad v_n = u_n + \frac{1}{(4n+4)!}$$

Exercice 11 : Etudier les suites définies par :

$$\mathbf{a}) \begin{cases} u_0 \in]0, +\infty[\\ \forall n \in \mathbb{N} \end{cases} \qquad u_{n+1} = \sqrt{\frac{u_n^2 + 7u_n}{2}} - 1$$

$$\mathbf{b}) \begin{cases} u_0 \in \mathbb{R} \\ \forall n \in \mathbb{N} \end{cases} u_{n+1} = \left| u_n^2 - \frac{1}{4} \right|$$

Exercice $12:\star$

Soit $(u_n)_{n\in\mathbb{N}^*}$ une suite complexe convergeant vers $\ell\in\mathbb{C}$.

On pose, pour $n \in \mathbb{N}^*$, $w_n = \frac{2}{n^2} \sum_{k=1}^n k u_k$.

Montrer que la suite $(w_n)_{n\in\mathbb{N}^*}$ converge aussi vers ℓ .

Exercice 13: *

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle bornée. On suppose qu'il existe $(a,b)\in\mathbb{R}^*\times\mathbb{R}^*$ tel que :

$$\frac{a}{b} \notin \mathbb{Q}$$
 et les suites $(e^{i a u_n})_{n \in \mathbb{N}}$, $(e^{i b u_n})_{n \in \mathbb{N}}$ sont convergentes

Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est convergente.

3 séries numériques

Exercice 14: Déterminer la nature de la série de terme général :

1)
$$u_n = \left(\operatorname{ch}\left(\sqrt{\ln(n)}\right)\right)^{-2}$$

$$2) \ u_n = \frac{1}{n} + \ln\left(\frac{n-1}{n}\right)$$

3)
$$u_n = \frac{\ln(n)}{\ln(e^n - 1)}$$

4)
$$u_n = (1 + \sqrt{n})^{-n}$$

5) $u_n = e^{-\sqrt{n^2-1}}$

6) $u_n = (\ln(n))^{-\ln(n)}$

7) $u_n = (\ln(\ln(n)))^{-\ln(\ln(n))}$

8) $u_n = \tan\left(\frac{\pi n}{4n+1}\right) - \cos\left(\frac{\pi}{n}\right)$

9) $u_n = \left(\cos\left(\frac{a}{n}\right) + b\sin\left(\frac{a}{n}\right)\right)^n - e^{ab}\left(1 + \frac{c}{n}\right)$ avec $(a, b, c) \in \mathbb{R}^3$

Exercice 15: Même question avec :

$$1) u_n = \frac{(-1)^n \ln(n)}{n}$$

2)
$$u_n = \frac{n(-1)^n + 2}{n^2 + 1}$$

3)
$$u_n = \sqrt{n + (-1)^n} - \sqrt{n}$$

4) $u_n = \ln\left(1 + \frac{(-1)^n}{n^{\frac{1}{3}}}\right)$

5)
$$u_n = \frac{(-1)^n}{\ln(n) + (-1)^n}$$

6)
$$u_n = \frac{(-1)^n}{\sqrt[n]{n!}}$$

Exercice 16 : Calculer les sommes des séries suivantes après avoir montrer leur convergence :

1)
$$\sum_{n=0}^{+\infty} (n-1) 4^{-n}$$

2)
$$\sum_{n=0}^{+\infty} \frac{n}{n^4 + n^2 + 1}$$

3)
$$\sum_{n=1}^{+\infty} \frac{6^n}{(3^{n+1} - 2^{n+1})(3^n - 2^n)}$$

4) $\sum_{n=2}^{+\infty} \ln \left(1 + \frac{(-1)^n}{n} \right)$

$$5) \sum_{n=2}^{+\infty} \ln \left(1 - \frac{1}{n^2} \right)$$

Exercice 17: $a_n = \frac{\pi}{2} (2 + \sqrt{3})^n$, et $b_n = \frac{\pi}{2} (2 - \sqrt{3})^n$.

1. Que peut-on dire de $\sin(a_n + b_n)$?

2. Démontrer que $\lim_{n \to +\infty} \sin(a_n) = 0$.

3. Etudier la convergence de la série $\sum \sin(a_n)$.

Exercice 18: *

On considère la fonction $f: x \mapsto \ln\left(\frac{e^x - 1}{x}\right)$ et la suite définie par $u_0 \in \mathbb{R}^*$ et $\forall n \in \mathbb{N}$ $u_{n+1} = f(u_n)$. Étudier la suite $(u_n)_{n \in \mathbb{N}}$, puis la série $\sum u_n$.

5

Exercice 19:

1) On considère la suite $(S_n)_{n\in\mathbb{N}}$ définie par $\forall n\in\mathbb{N}, S_n=\sum_{k=0}^n\sin(k)$.

Montrer que cette suite est bornée.

2) On considère maintenant la série $\sum \frac{\sin(n)}{n}$.

(a) Exprimer les sommes partielles de cette série en fonction de S_n .

(b) En déduire que la série est convergente et donner sa somme.

Exercice 20 : Soit $(u_n)_{n \in \mathbb{N}^*}$ une suite de complexes telle que $\sum_{k=1}^n u_k \longrightarrow \ell \in \mathbb{C}$.

Montrer que
$$\frac{1}{\ln(n)} \left(\sum_{k=1}^{n} \frac{u_k}{k} \right) \xrightarrow[n \to +\infty]{} \ell.$$

On admettra que
$$\sum_{k=1}^{n} \frac{1}{k} = \ln(n) + \gamma + o(1)$$

Exercice 21: Pour tout entier $n \in \mathbb{N}$, on pose $u_n = \int_0^{\frac{\pi}{4}} \tan^n(t) dt$.

- 1) Trouver une relation de récurrence entre u_n et u_{n+2} .
- 2) Trouver un équivalent de u_n lorsque n tend vers l'infini.
- 3) Donner la nature de la série de terme général $(-1)^n u_n$.
- 4) Discuter, suivant les valeurs de $\alpha \in \mathbb{R}$, la nature de la série de terme général $\frac{u_n}{n^{\alpha}}$.

Exercice 22 : On considère les suites $(h_n)_{n\in\mathbb{N}^*}$ et $(u_n)_{n\in\mathbb{N}^*}$ définies par :

$$\forall n \in \mathbb{N}^* \quad h_n = \sum_{k=1}^n \frac{1}{n} \qquad u_n = h_n - \ln(n)$$

- 1) En étudiant la série de terme général $u_{n+1} u_n$, montrer que la suite $(u_n)_{n \in \mathbb{N}^*}$ est convergente. On note γ sa limite.
- 2) Justifier le fait que $h_n = \ln(n) + \gamma + o(1)$. Montrer qu'il existe deux réels a et b que l'on déterminera, tels que

$$\forall n \in \mathbb{N}^* \quad \sum_{k=1}^{2n} \frac{(-1)^k}{k} = ah_{2n} - bh_n$$

En déduire la formule suivante : $\sum_{k=1}^{+\infty} \frac{(-1)^k}{k} = -\ln(2)$

3) On considère $\alpha \in \mathbb{R}$. Soit $(w_n)_{n \in \mathbb{N}^*}$ la suite définie par $w_n = -\frac{\alpha}{n}$ si n est un multiple de 4 et $w_n = \frac{1}{n}$ sinon. Pour $\mathbb{N} \leq 1$ on pose $S_n = \sum_{k=1}^n w_k$.

6

- (a) Montrer que la suite $(S_{4n})_{n\in\mathbb{N}^*}$ est convergente si et seulement si $\alpha=3$.
- (b) On suppose que $\alpha = 3$. Etablir la convergence de la série $\sum w_n$ et calculer sa somme.

Exercice 23 : Soit $a \in \mathbb{R}$.

- 1) Montrer que la série de terme général $\arctan(n+a) \arctan n$ est convergente.
- 2) On pose $S(a) = \sum_{k=0}^{\infty} (\arctan(k+a) \arctan k)$. Trouver $\lim_{a \to +\infty} S(a)$.