Correction: Devoir surveillé n°3

MP Clemenceau 2023-24

Jeudi 30 novembre 2023

Exercice commun

Pour tout entier naturel n, on définit sur l'intervalle $J=[1,+\infty[$, la fonction f_n définie par :

$$f_n(x) = \frac{(-1)^n}{\sqrt{1+nx}}.$$

1) Démontrer que la série de fonctions $\sum_{n\geq 0} f_n$ converge simplement sur J.

Correction : À $x \in J$ fixé, la suite $(|f_n(x)|)_{n\geqslant 0}$ est décroissante et de limite nulle. La série $\sum_{n\geqslant 0} f_n(x)$ vérifie donc les hypothèses du critère spécial des séries alternées et est ainsi convergente, d'où la convergence simple de la série $\sum f_n$ sur J.

On note alors pour tout x de J, $\varphi(x)$ sa somme.

2) Montrer que cette série de fonctions ne converge pas normalement sur J.

Correction: Pour $x \in J$, $|f_n(x)| = \frac{1}{\sqrt{1+nx}}$, or $\frac{1}{\sqrt{1+nx}} \sim \frac{1}{\sqrt{nx}}$, $\frac{1}{\sqrt{nx}}$ étant le terme général d'une série de Riemann divergente ($\alpha = 1/2 < 1$). Ainsi, la série $\sum f_n$ ne converge-t-elle absolument en aucun point et donc *a fortiori* pas normalement sur J (ni sur aucun intervalle, d'ailleurs).

Autre rédaction : pour $n \in \mathbb{N}$, la fonction $|f_n|$ est décroissante sur J, donc $||f_n||_{\infty} = \frac{1}{\sqrt{1+n}}$. Comme on a $\frac{1}{\sqrt{1+n}} \sim \frac{1}{n^{\frac{1}{2}}}$, la série $\sum \frac{1}{\sqrt{1+n}}$ est divergente, donc la série $\sum f_n$ ne converge pas normalement sur J.

3) Étudier alors sa convergence uniforme sur J.

Correction : soit $x \in J$ et $n \in \mathbb{N}$. La majoration du reste par le critère spécial donne

$$\left| \sum_{k=n+1}^{+\infty} f_k(x) \right| \leqslant |f_{n+1}(x)|$$

La décroissance de $|f_{n+1}|$ donnent alors

$$\left| \sum_{k=n+1}^{+\infty} f_k(x) \right| \leqslant \frac{1}{\sqrt{n+2}}$$

d'où la convergence uniforme de la série $\sum f_n$ sur J.

4) Déterminer $\ell = \lim_{x \to +\infty} \sum_{n=0}^{+\infty} f_n(x)$.

Correction : Pour tout entier n f_n admet une limite en $+\infty$. Pour n=0, $\lim_{x\to +\infty}=1$, et pour tout $n\geqslant 1$, $\lim_{x\to +\infty}f_n(x)=0$. La série $\sum f_n$ étant uniformément convergente, le théorème de la double limite assure la convergence de $\sum \lim_{x\to +\infty}f_n(x)$ et permet de dire que

$$\lim_{x \to +\infty} \sum_{n=0}^{+\infty} f_n(x) = \sum_{n=0}^{+\infty} \lim_{x \to +\infty} f_n(x) = 1$$

1

- 5) Pour $n \in \mathbb{N}^*$, on note $u_n = \frac{(-1)^n}{\sqrt{n}}$.
 - a) Justifier la convergence de la série de terme général u_n . On note $a = \sum_{n=1}^{+\infty} u_n$ sa somme.

Correction : La série de terme général $u_n = \frac{(-1)^n}{\sqrt{n}}$ est une série de Riemann alternée; elle vérifie les hypothèses du critère spécial (signe alterné, valeur absolue décroissante et de limite nulle) et est donc convergente.

b) Montrer que l'on a au voisinage de l'infini : $\varphi(x) = \ell + \frac{a}{\sqrt{x}} + O\left(\frac{1}{x^{3/2}}\right)$.

Correction: On a

$$\varphi(x) = 1 + \sum_{n=1}^{+\infty} f_n(x) = 1 + \sum_{n=1}^{+\infty} \frac{(-1)^n}{\sqrt{nx}} - \sum_{n=1}^{+\infty} (-1)^n \left(\frac{1}{\sqrt{nx}} - \frac{1}{\sqrt{1+nx}} \right)$$

On en déduit que

$$\varphi(x) - 1 - \frac{a}{\sqrt{x}} = -\sum_{n=1}^{+\infty} (-1)^n \left(\frac{1}{\sqrt{n}x} - \frac{1}{\sqrt{1+nx}} \right)$$

L'inégalité des accroissements finis appliquée à la fonction $h: t \mapsto \frac{1}{\sqrt{t}}$, de dérivée $h': t \mapsto -\frac{1}{2t^{3/2}}$ sur l'intervalle [nx, 1+nx] donne

$$0 \leqslant \frac{1}{\sqrt{nx}} - \frac{1}{\sqrt{1+nx}} \leqslant \frac{1}{2(nx)^{3/2}}$$

On en déduit que, sachant que la série $\sum \frac{1}{n^{3/2}}$ est convergente

$$\left| \sum_{n=1}^{+\infty} (-1)^n \left(\frac{1}{\sqrt{nx}} - \frac{1}{\sqrt{1+nx}} \right) \right| \le \frac{1}{2x^{3/2}} \sum_{n=1}^{+\infty} \frac{1}{n^{3/2}}$$

On peut donc conclure que $\varphi(x) = \ell + \frac{a}{\sqrt{x}} + O\left(\frac{1}{x^{3/2}}\right)$.

Problème CCINP: matrices « toutes -puissantes »

Notations et objectifs

Dans tout le texte, \mathbb{K} désigne le corps \mathbb{R} ou \mathbb{C} , et p un entier naturel non nul.

On dit qu'une matrice A de $\mathscr{M}_p(\mathbb{K})$ est « **toute-puissante** sur \mathbb{K} »et on notera en abrégé **TPK**, si, pour tout $n \in \mathbb{N}^*$, il existe une matrice B de $\mathscr{M}_p(\mathbb{K})$ telle que $A = B^n$. On note $T_p(\mathbb{K})$ l'ensemble des matrices de $\mathscr{M}_p(\mathbb{K})$ toutes-puissantes sur \mathbb{K} :

$$T_p(\mathbb{K}) = \{ A \in \mathscr{M}_p(K) \mid \forall n \in \mathbb{N}^* \exists B \in \mathscr{M}_p(\mathbb{K}), A = B^n \}$$

L'objectif principal du sujet est d'établir le résultat suivant :

toute matrice inversible de $\mathcal{M}_p(\mathbb{C})$ est $\mathbf{TP}\mathbb{C}$.

Partie I : quelques exemples

- 1) Le cas de la taille 1
 - a) Démontrer que $T_1(\mathbb{R}) = [0, +\infty[$.

Correction : Soit $n \in \mathbb{N}^*$, tout nombre réel positif admet une racine n-ième, donc $[0, +\infty[\subset T_1(\mathbb{R}).$ Pour tout réel x strictement négatif, il n'existe pas de réel a tel que $a^2 = x$. On en déduit que $T_1(\mathbb{R}) \subset [0, +\infty[$. D'où l'égalité.

b) Soient $n \in \mathbb{N}^*$ et $b = re^{i\theta}$ avec r > 0 et $\theta \in \mathbb{R}$. Donner les racines n-ièmes du nombre complexe b, c'est à dire les solutions de l'équation $z^n = b$ d'inconnue $z \in \mathbb{C}$.

Correction : Les racines n-ièmes de $b = re^{i\theta}$ sont, par propriété, de la forme $\sqrt[n]{r}e^{i\left(\frac{\theta+2k\pi}{n}\right)}$ avec $k \in [0, n-1]$. En déduire $T_1(\mathbb{C})$.

Correction : Comme pour tout entier non nul $0^n = 0$ on peut dire que 0 est $\mathbf{TP}\mathbb{C}$. D'après la question précédente tout complexe non nul est $\mathbf{TP}\mathbb{C}$, on en déduit donc que $T_1(\mathbb{C}) = \mathbb{C}$.

- 2) Une condition nécessaire ...
 - a) Démontrer que si $A \in T_p(\mathbb{K})$, alors $\det(A) \in T_1(\mathbb{K})$.

Correction : Soit A une matrice élément de $T_p(\mathbb{K})$. Soit $n \in \mathbb{N}^*$, il existe $B \in \mathscr{M}_p(\mathbb{K})$ telle que $A = B^n$. En passant au déterminant on a alors : $\det(A) = \det(B^n) = (\det(B))^n$. Ceci étant vrai pour tout entier non nul n, on en déduit que $\det(A) \in T_1(\mathbb{K})$.

b) En déduire un exemple de matrice de $\mathcal{M}_2(\mathbb{R})$ qui n'est pas **TPIR**.

Correction: Il suffit de prendre une matrice dont le déterminant est strictement négatif: $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

3) ... mais pas suffisante

Soit $A = \begin{pmatrix} -1 & 0 \\ 0 & -2 \end{pmatrix}$. Démontrer qu'il n'existe aucune matrice $B = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ de $\mathcal{M}_2(\mathbb{R})$ telle que $A = B^2$. En déduire que la condition nécessaire de la question précédente n'est pas suffisante.

Correction : L'équation $\begin{pmatrix} a & b \\ c & d \end{pmatrix}^2 = \begin{pmatrix} -1 & 0 \\ 0 & -2 \end{pmatrix}$ donne le système

$$\begin{cases} a^2 + bc = -1 \\ b(a+d) = 0 \\ c(a+d) = 0 \\ cb + d^2 = -2 \end{cases}$$

Si b=0 la première équation donne une contradiction, si c=0 c'est la dernière qui donne une contradiction. On a alors a = -d et donc $a^2 = d^2$, ce qui est impossible avec la première et la dernière équation.

Conclusion le système n'admet pas de solutions et donc A n'est pas TPIR. Cependant son déterminant est positif.

La condition de la question précédente n'est donc pas suffisante.

4) Un cas où A est diagonalisable

Soit
$$A = \begin{pmatrix} 0 & 3 & 2 \\ -2 & 5 & 2 \\ 2 & -3 & 0 \end{pmatrix}$$
.

a) Démontrer que A est diagonalisable sur \mathbb{R} .

Correction : Après calculs on obtient $\chi_A = (X-1)(X-2)^2$. De plus le rang de $A-2I_3$ est égal à 1 et donc le sous espace propre associé à 2 est donc de dimension 2. On en déduit que A est diagonalisable.

b) Démontrer que la matrice A est **TPIR**.

Correction : D'après la question précédente il existe P une matrice inversible telle que $A = Pdiag(1, 2, 2)P^{-1}$. Pour $n \in \mathbb{N}^*$ on pose alors $B = Pdiag(1, \sqrt[n]{2}, \sqrt[n]{2}) P^{-1}$. On a alors $B^n = A$. La matrice A est donc bien **TPIR**.

c) Pour chacun des cas n=2 et n=3, expliciter une matrice B de $\mathcal{M}_3(\mathbb{R})$ vérifiant $B^n=A$.

Correction: D'après le calcul de la question précédente pour obtenir explicitement les matrices B il faut donc calculer la matrice de passage de la base canonique à une base de vecteurs propres et l'inverser.

Après calculs on trouve $P = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 0 & 2 \\ -1 & 1 & 0 \end{pmatrix}$, puis $P^{-1} = \begin{pmatrix} 2 & -3 & -2 \\ 2 & -3 & -1 \\ -1 & 2 & 1 \end{pmatrix}$. Par suite, pour $n \in \mathbb{N}^*$ on

obtient:

$$B = \begin{pmatrix} 2 - \sqrt[n]{2} & -3 + 3\sqrt[n]{2} & -2 + 2\sqrt[n]{2} \\ 2 - 2\sqrt[n]{2} & -3 + 4\sqrt[n]{2} & -2 + 2\sqrt[n]{2} \\ -2 + 2\sqrt[n]{2} & 3 - 3\sqrt[n]{2} & 2 - \sqrt[n]{2} \end{pmatrix}$$

5) Le cas des matrices nilpotentes

Soit N une matrice nilpotente de $\mathcal{M}_p(\mathbb{K})$.

a) Déterminer le polynôme caractéristique de N, en déduire que $N^p = 0$.

Correction: C'est bien entendue une question de cours qu'il faut redémontrer.

Soit $\lambda \in \mathbb{K}$ une valeur propre de N, il existe V un vecteur (colonne) non nul tel que $NV = \lambda V$. On a alors, par récurrence immédiate ou par propriété sur les polynômes d'endomorphisme, pour tout $n \in \mathbb{N}^*$, $N^nV = \lambda^nV = 0$. Comme V est non nul on en déduit que $\lambda = 0$.

0 est donc la seule valeur propre de N et donc $\chi_N = X^p$.

On peut alors utiliser le théorème de Cayley-Hamilton pour dire que $\chi_N(N)=N^p=0$.

b) Démontrer que si N est **TPK**, alors N est la matrice nulle.

Correction : on suppose que N est **TPK**. Soit $n \in \mathbb{N}^*$ et B tel que $N = B^n$. On a alors $N^p = B^{pn} = 0$. On en déduit que B est alors aussi nilpotente et donc, d'après ce qui précède, $B^p = 0$. En choisissant alors n = p on obtient que N = 0.

Partie II: le cas où le polynôme caractéristique est scindé

Dans toute cette partie, A désigne une matrice de $\mathcal{M}_p(\mathbb{K})$ dont le polynôme caractéristique noté χ_A est scindé sur \mathbb{K} , c'est à dire de la forme :

$$\chi_A = \prod_{i=1}^k \left(X - \lambda_i \right)^{r_i}$$

avec k, r_1, \ldots, r_k des entiers de \mathbb{N}^* et $\lambda_1, \ldots, \lambda_k$ les valeurs propres de A, éléments de \mathbb{K} .

On note \mathscr{B} la base canonique de \mathbb{K}^p et u l'endomorphisme de \mathbb{K}^p dont A est la matrice dans la base \mathscr{B} . Enfin, pour $i \in [1, k]$, on note $C_i = \ker ((u - \lambda_i Id)^{r_i})$ que l'on appelle sous-espace caractéristique de u associé à la valeur propre λ_i .

6) Démontrer que $\mathbb{K}^p = \bigoplus_{i=1}^p C_i$.

Correction : comme dans le cours, il suffit d'appliquer le théorème de décomposition des noyaux. En effet si on pose, pour $i \in [\![1,k]\!]$, $P_i = (X-\lambda_i)_i^r$, les polynômes P_i sont deux à deux premiers entre eux car les λ_i le sont, on peut donc utiliser le théorème. On a alors

$$\ker (\chi_A(u)) = \bigoplus_{i=1}^k \ker (P_i(u))$$

Or d'après le théorème de Cayley-Hamilton, $\chi_A(u) = \chi_u(u) = 0$ et donc $\ker(\chi_A(u)) = \mathbb{K}^p$. Avec les notations de l'énoncé on obtient bien l'égalité demandée.

7) a) Soit v un endomorphisme de \mathbb{K}^p qui commute avec u et Q un polynôme à coefficients dans \mathbb{K} . Démontrer que $\ker(Q(u))$ est stable par v.

Correction : Ici ce n'est pas complètement une question de cours. On peut se poser la question de savoir qu'est-ce qui est utilisable ou redémontrable.

Soit $Q = \sum_{i=0}^{m} a_i X^i$ un polynôme de $\mathbb{K}[X]$. Soit $x \in \ker(Q(u))$. on a, en utilisant la commutativité entre u et v:

$$Q(u)(v(x)) = Q(u) \circ v(x) = \sum_{i=0}^{m} a_i u^i \circ v(x) = \sum_{i=0}^{m} a_i v \circ u^m(x) = v \circ Q(u)(x) = 0$$

On en déduit que ker(Q(u)) est bien stable par v.

On pouvait aussi dire, en s'aidant du cours, que : comme u et v commutent, v commute avec tout polynôme en u. Lorsque deux endomorphismes commutent, l'image et le noyau de l'un sont stables par l'autre. D'où le résultat.

b) En déduire que pour tout $i \in [1, k]$, le sous espace caractéristique C_i est stable par u.

On notera ainsi u_{C_i} l'endomorphisme induit par u sur C_i .

Correction : comme u commute avec lui même on a directement à l'aide de la question précédente le résultat demandé.

8) Soit $i \in [1, k]$. Justifier que l'application $u_{C_i} - \lambda_i Id_{C_i}$ est un endomorphisme de C_i nilpotent.

Correction : Soit $x \in C_i$, par définition on a

$$(u_{C_i} - \lambda_i Id_{C_i})^{r_i}(x) = (u - \lambda_i Id)^{r_i}(x) = 0$$

Donc $u_{C_i} - \lambda_i Id_{C_i}$ est un endomorphisme de C_i nilpotent.

9) En déduire que la matrice A peut s'écrire sous la forme :

$$A = P diag (\lambda_1 I_{p_1} + N_1, \dots, \lambda_k I_{p_k} + N_k) P^{-1}$$

où P est un matrice inversible de $\mathscr{M}_p(\mathbb{K})$ et, pour tout $i \in [1, k]$, $p_i = \dim(C_i)$, et N_i est une matrice nilpotente de $\mathscr{M}_{p_i}(\mathbb{K})$.

Correction : soit $i \in [1, k]$, on note $n_i = u_{C_i} - \lambda_i Id_{C_i}$. C'est un endomorphisme nilpotent de C_i d'après la question précédente.

On considère une base \mathscr{C} de \mathbb{K}^p adaptée à la somme directe $\mathbb{K}^p = \bigoplus_{i=1}^p C_i$. On note \mathscr{B}_i la base de C_i obtenue par les vecteurs de cette base \mathscr{C} .

On note N_i la matrice de n_i dans la base \mathscr{B}_i . Comme $u_{C_i} = \lambda_i Id_{C_i} + n_i$, la matrice de u_{C_i} dans la base \mathscr{B}_i est $\lambda_i I_{p_i} + N_i$.

La matrice de u dans la base $\mathscr C$ est alors $diag(\lambda_1 I_{p_1} + N_1, \dots, \lambda_k I_{p_k} + N_k)$. En notant P la matrice de passage de la base canonique à la base $\mathscr C$ on obtient le résultat demandé.

10) Démontrer que, si pour tout $i \in [1, k]$ la matrice $\lambda_i I_{p_i} + N_i$ est **TPK**, alors A est elle-même **TPK**.

Correction: on suppose que pour tout $n \in \mathbb{N}^*$ il existe, pour tout $i \in [1, k]$, une matrice $B_{i,n} \in \mathscr{M}_{p_i}(\mathbb{K})$ telle que $\lambda_i I_{p_i} + N_i = B_{i,n}^n$. La matrice $B_n = Pdiag(B_{1,n},...,B_{k,n})P^{-1}$ vérifie alors $B_n^n = A$.

Conclusion : la matrice A est \mathbf{TPK}

Partie III : le cas des matrices unipotentes

Soit N une matrice nilpotente de $\mathcal{M}_p(\mathbb{K})$. Nous allons montrer que la matrice unipotente $I_p + N$ est **TPK**. On pourra confondre polynôme et fonction polynômiale.

On rappelle que si f est une fonction, la notation $f(x) = o(x^p)$ signifie qu'il existe une fonction ε tendant vers 0 en 0 telle que $f(x) = x^p \varepsilon(x)$ au voisinage de 0.

- 11) Une application des développements limités
 - a) Soit V un polynôme de $\mathbb{R}[X]$ tel que $V(x) = o(x^p)$ au voisinage de 0. Démontrer qu'il existe un polynôme Q de $\mathbb{R}[X]$ tel que $V = X^pQ$.

Correction : Soit V un polynôme de $\mathbb{R}[X]$ tel que $V(x) = o(x^p)$ au voisinage de 0. D'après la division euclidienne de V par X^p il existe Q et R deux polynômes de $\mathbb{R}[X]$ tels que $V = X^pQ + R$, avec deq(R) < p.

Comme $V(x) = o\left(x^p\right)$ il existe ε une fonction de limite nulle en 0 telle qu'au voisinage de 0, $V(x) = x^p \varepsilon(x)$. On a alors $V(x) - x^p Q(x) = x^p (\varepsilon(x) - Q(x))$. On en déduit que $x \mapsto \frac{V(x)}{x^p} - Q(x)$ admet une limite finie en 0. Or si $R \neq 0$ alors $x \mapsto \frac{R(x)}{x^p}$ n'admet pas de limite finie en 0, d'où R = 0 et donc $V = X^p Q$. Remarque : on peut ajouter que, de plus , 0 est racine de Q.

b) Soit $n \in \mathbb{N}^*$. Démontrer l'existence d'un polynôme U de $\mathbb{R}[X]$ tel que l'on ait, au voisinage de 0:

$$1 + x = (U(x))^n + o(x^p)$$

Indication : on pourra utiliser un développement limité de $x \mapsto (1+x)^{\alpha}$, pour un α correctement choisi. Correction : on considère le développement limité de $x \mapsto (1+x)^{\frac{1}{n}}$ au voisinage de 0 à l'ordre P. Il s'écrit :

$$(1+x)^{\frac{1}{n}} = U(x) + o(x^p)$$
 avec $U \in \mathbb{R}[X]$

On obtient alors

$$1 + x = (U(x) + o(x^{p}))^{n} = (U(x) + x^{p} \varepsilon(x))^{n} = \sum_{j=0}^{n} {n \choose j} (U(x))^{n-j} x^{pj} \varepsilon(x)^{j}$$
$$= (U(x))^{n} + x^{p} \varepsilon(x) \sum_{j=1}^{n} {n \choose j} U(x)^{n-j} x^{pj-p} \varepsilon(x)^{j-1} = (U(x))^{n} + o(x^{p})$$

c) En déduire que , pour tout $n \in \mathbb{N}^*$, il existe un polynôme Q de $\mathbb{R}[X]$ tel que :

$$1 + X = U^n + X^p Q$$

Correction : comme $1 + X - U^n$ est un polynôme il suffit d'utiliser les deux questions précédentes.

- 12) Applications
 - a) Démontrer que la matrice unipotente $I_p + N$ est **TPK**.

Correction : Soit $n \in \mathbb{N}^*$. D'après la question précédente $I_p + N = (U(N))^n + N^p Q(N)$. Or N est nilpotente donc $N^p = 0$, d'après la question I.5). D'où $I_p + N = (U(N))^n$. Conclusion : $I_p + N$ est **TPK**.

b) Soit $\lambda \in \mathbb{K}$ non nul. En déduire que si λ est **TPK**, alors la matrice $\lambda I_p + N$ est **TPK**.

Correction : soit $\lambda \in \mathbb{K}$ non nul. On suppose que λ est **TPK**. Comme N est nilpotente la matrice $\frac{1}{\lambda}N$ est aussi nilpotente.

Soit $n \in \mathbb{N}^*$, il existe $\mu \in \mathbb{K}$ tel que $\mu^n = \lambda$ et, d'après la question précédente, il existe $B \in \mathcal{M}_p(\mathbb{K})$ tel que $I_p + \frac{1}{\lambda}N = B^n$. On a alors $\lambda I_p + N = \lambda B^n = (\mu B)^n$.

On obtient donc bien que $\lambda I_p + N$ est **TPK**.

13) Le résultat annoncé

a) Conclure que toute matrice inversible de $\mathcal{M}_p(\mathbb{C})$ est \mathbf{TPC} .

Correction: d'après la question 9) toute matrice complexe peut s'écrire sous la forme $A = Pdiag(\lambda_1 I_{p_1} + N_1, \dots, \lambda_k I_{p_k} + N_k) P^{-1}$, avec les λ_i les valeurs propres. Si A est inversible alors aucune des valeurs propres est nulle. On en déduit, d'après la question précédente, que toutes les matrices $\lambda_k I_{p_k} + N_k$ sont $\mathbf{TP}\mathbb{C}$, et d'après la question 10) que A est aussi $\mathbf{TP}\mathbb{C}$.

b) Toute matrice de $\mathcal{M}_p(\mathbb{C})$ est-elle $\mathbf{TP}\mathbb{C}$?

Correction: la question 5b) permet de dire que les matrices nilpotents non nulles ne sont pas TPC.

14) Donner un exemple de matrice de $\mathcal{M}_4(\mathbb{R})$ non diagonalisable et non inversible qui est **TPIR**.

Correction: il suffit de construire une matrice par blocs à l'aide des questions précédentes: $\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

Il y un bloc nul qui est **TPIR**, et le bloc $I_3 + N$, avec $N = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ qui est nilpotente, est aussi **TPIR**.

Problème Mines Ponts

Représentation matricielle $A e^A$

Soit n un entier naturel non nul et $\mathcal{M}_n(\mathbb{C})$ l'espace vectoriel des matrices carrées d'ordre n à cœfficients complexes. On note I_n la matrice identité de $\mathcal{M}_n(\mathbb{C})$. Une matrice N de $\mathcal{M}_n(\mathbb{C})$ est dite nilpotente d'indice p si p est le plus petit entier strictement positif pour lequel $N^p = 0$.

Pour $A \in \mathcal{M}_n(\mathbb{C})$, on appelle exponentielle de A, et on note $\exp(A)$ ou e^A , la matrice $e^A = \sum_{k=0}^{+\infty} \frac{A^k}{k!}$.

On admet que si deux matrices A et B de $\mathcal{M}_n(\mathbb{C})$ sont telles que AB = BA, on a $e^{A+B} = e^{A}e^{B}$. Enfin, on appelle bloc de Jordan d'ordre n associé au nombre complexe λ , la matrice

$$J_n(\lambda) = \begin{pmatrix} \lambda & 1 & 0 & \dots & 0 \\ 0 & \lambda & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & \ddots & 1 \\ 0 & \dots & \dots & 0 & \lambda \end{pmatrix}$$

Si n et p sont deux entiers naturels non nuls on note $\mathcal{M}_{n,p}(\mathbb{C})$ l'espace vectoriel des matrices à cœfficients complexes comportant n lignes et p colonnes. On notera indifféremment $\mathcal{M}_{n,n}(\mathbb{C})$ ou $\mathcal{M}_n(\mathbb{C})$.

Préliminaire sur la représentation ze^z dans \mathbb{C}

1) Soit r et R des nombres réels strictement positifs, α et θ des nombres réels. On note $\omega = re^{i\alpha}$ et $z = Re^{i\theta}$. Montrer que l'équation $ze^z = \omega$ équivalente au système :

$$\begin{cases} R e^{R \cos \theta} = r \\ R \sin(\theta) = \alpha - \theta \pmod{2\pi} \end{cases}$$

6

Correction : Soit $z = R e^{i\theta}$, et $\omega = re^{i\alpha}$. On a

$$e^z = e^{R\cos(\theta) + iR\sin(\theta)} = e^{R\cos(\theta)} e^{i\sin(\theta)}$$

On en déduit

$$z e^z = R e^{R\cos(\theta)} e^{i(\sin(\theta) + \theta)}$$

L'équation $z e^z = \omega$ est alors équivalente au système

$$\begin{cases} R e^{R \cos \theta} = r \\ R \sin(\theta) = \alpha - \theta \pmod{2\pi} \end{cases}$$

On choisit dorénavant le réel α dans l'intervalle $[2\pi, 4\pi]$. Soit alors φ l'application de $[0, \pi]$ dans \mathbb{R} définie par la formule:

 $\varphi(\theta) = \frac{\alpha - \theta}{\sin \theta} e^{\left((\alpha - \theta) \frac{\cos \theta}{\sin \theta}\right)}$

2) Déterminer les limites de $\varphi(\theta)$ lorsque $\theta \to 0^+$ et lorsque $\theta \to \pi^-$. Que peut-on déduire sur les solutions de l'équation $\varphi(\theta) = r$ pour r > 0 fixé.

Correction: comme α est strictement positif, on a $\lim_{\theta \to 0^+} \frac{\alpha - \theta}{\sin(\theta)} = +\infty$. Avec $\lim_{\theta \to 0^+} \cos(\theta) = 1$ on en déduit que $\lim_{\theta \to 0^+} \varphi(\theta) = +\infty$.

Pour l'étude en π^- on pose $h=\pi-\theta$. Lorsque θ tend vers π par valeurs inférieures, cela revient à h tend vers 0 par valeurs supérieures. On a $\sin(\theta) = \sin(\pi - h) = \sin(h)$, et $\sin(h) \sim h$. On en déduit que

$$\frac{\alpha - \theta}{\sin(\theta)} \underset{h \to 0^+}{\sim} \frac{\alpha - \pi}{h}.$$

De plus
$$\cos(\theta) = \cos(\pi - h) = -\cos(h)$$
, et $\cos(h) = -1 + o \atop h \to 0^+$ (h^2), d'où
$$\frac{(\alpha - \theta)\cos(\theta)}{\sin(\theta)} = (\alpha - \pi + h)\left(\frac{-1}{h} + o(h)\right) \text{ et donc } \frac{(\alpha - \theta)\cos(\theta)}{\sin(\theta)} = \frac{-(\alpha - \pi)}{h} + o(h).$$
 Par croissance comparée on a $\lim_{x \to +\infty} x e^{-x} = 0$. On en déduit que $\lim_{\theta \to \pi^-} \varphi(\theta) = 0$.

Comme φ est une fonction continue sur $]0,\pi[$ comme composée de fonction continue et qu'elle est positive, on déduit des limites que $]0, +\infty[=\varphi(]0, \pi[),$ et donc tout $\alpha > 0$ admet un antécédent par φ . L'équation $\varphi(\theta) = r$ pour r > 0, admet toujours au moins une solution.

Soit $D = \{Re^{i\theta}; R > 0; 0 < \theta < \pi\} \cup \{0\}$ et l'application de D dans \mathbb{C} définie par $g(z) = ze^z$.

3) Déduire de ce qui précède que g est surjective.

Correction : On a g(0) = 0 donc 0 a un antécédent par g.

Soit $z = r e^{i\alpha}$, avec $r \in \mathbb{R}_+^*$. On peut choisir α dans $[2\pi, 4\pi[$. D'après la question 2) il existe $\theta \in]0, \pi[$ tel que $\varphi(\theta) = r$. On pose alors $R = \frac{\alpha - \theta}{\sin(\theta)}$. Pour $\theta \in]0, \pi[$, $\sin(\theta)$ est strictement positif, de plus, par le choix de α , $\alpha - \theta$ est aussi strictement positif, donc R est un réel strictement positif.

Par définition de R et θ on a alors :

$$R e^{R\cos(\theta)} = \varphi(\theta) = r$$
 et $R\sin(\theta) = \alpha - \theta$

Si on pose $z' = R e^{i\theta}$, on a alors, d'après la question 1), $z' e^{z'} = z$ avec $z' \in D$.

Conclusion : $g: D \to \mathbb{C}$ est bien surjective.

Représentation Ae^A d'un bloc de Jordan

Soit $N \in \mathcal{M}_n(\mathbb{C})$ une matrice nilpotente d'indice n.

4) Montrer qu'il existe $X \in \mathcal{M}_{n,1}(\mathbb{C})$ telle que $N^{n-1}X \neq 0$ et que la famille $(X, NX, ..., N^{n-1}X)$ est libre.

Correction: La matrice N est nilpotente d'indice n, donc, par définition, $N^{n-1} \neq 0$. Il existe une colonne de N^{n-1} qui est non nulle. Si c'est la j_0 ième C_{j_0} , alors, en prenant X le vecteur colonne dont toutes les composantes sont nulles sauf la j_0 ième égale à 1, $N^{n-1}X = C_{j_0}$. $N^{n-1}X$ est alors non nulle.

Autre méthode : si f est l'endomorphisme de \mathbb{C}^n canoniquement associé à N, alors $f^{n-1} \neq 0$ et donc il existe $e \in \mathbb{C}^n$ tel que $f^{n-1}(e) \neq 0$. On considère alors X canoniquement associé à e.

Soit
$$(\lambda_k)_{k \in [0, n-1]} \in \mathbb{R}^n$$
 tel que $\sum_{k=0}^{n-1} \lambda_k N^k X = 0$.

Supposons que la famille $(\lambda_k)_{k \in [0,n-1]}$ ne soit pas nul. On considère alors j le plus petit entier de [0,n-1] tel que $\lambda_j \neq 0$.

On a alors $\sum_{k=j}^{n-1} \lambda_k N^k X = 0$. On multiplie à gauche par N^{n-1-j} , et on obtient

$$\sum_{k=j}^{n-1} \lambda_k N^{n-1-j+k} X = 0 \quad \text{d'où} \qquad \lambda_j N^{n-1} + N^n \sum_{k=j+1}^{n-1} \lambda_k N^{k-j-1} X = 0$$

Or $N^n = 0$, on en déduit que $\lambda_j N^{n-1} X = 0$, or $N^{n-1} X \neq 0$ et donc $\lambda_j = 0$.

On obtient une contradiction et donc pour tout $k \in [0, n-1], \lambda_k = 0$.

La famille $(X, NX, ..., N^{n-1}X)$ est libre.

5) En déduire que N est semblable à $J_n(0)$.

Correction : On considère f l'endomorphisme de \mathbb{C}^n canoniquement associé à N et e le vecteur de \mathbb{C}^n canoniquement associé à X. D'après la question précédente la famille $(f^{n-1}(e), \ldots, f(e), e)$ est libre. C'est donc une base de \mathbb{C}^n . La matrice de f dans cette base est alors $J_n(0)$. On en déduit que N et $J_n(0)$ sont semblables.

6) Montrer que $e^{J_n(0)}$ est inversible et que $J_n(0)e^{J_n(0)}$ est nilpotente d'indice n.

Correction : $J_n(0)$ commute avec elle même donc on a

$$e^{J_n(0)} e^{-J_n(0)} = e^{J_n(0) - J_n(0)} = e^{0 \mathcal{M}_n(\mathbb{C})} = I_n$$

Donc $e^{J_n(0)}$ est inversible, d'inverse $e^{-J_n(0)}$.

Le résultat est encore vrai pour toute matrice $A : e^A$ est inversible

Comme $J_n(0)$ est nilpotente la matrice $e^{J_n(0)}$ est un polynôme en $J_n(0)$. On a en effet $e^{J_n(0)} = \sum_{k=0}^{n-1} \frac{1}{k!} J_n(0)^k$.

On en déduit que $e^{J_n(0)}$ commute avec $J_n(0)$. On a alors

$$\left(J_n(0) e^{J_n(0)}\right)^n = J_n(0)^n \left(e^{J_n(0)}\right)^n = 0$$

Comme $e^{J_n(0)}$ est inversible et $J_n(0)^{n-1}$ est non nulle, on obtient :

$$(J_n(0) e^{J_n(0)})^{n-1} = J_n(0)^{n-1} (e^{J_n(0)})^{n-1}$$
 et donc $(J_n(0) e^{J_n(0)})^{n-1} \neq 0$

 $J_n(0)e^{J_n(0)}$ est donc nilpotente d'indice n.

7) Montrer que si $P \in \mathcal{M}_n(\mathbb{C})$ est inversible, on a $Pe^{J_n(0)}P^{-1} = e^{PJ_n(0)P^{-1}}$. En déduire qu'il existe $\tilde{N} \in \mathcal{M}_n(\mathbb{C})$ telle que $J_n(0) = \tilde{N}e^{\tilde{N}}$.

Correction: Première méthode: on a déjà montré que $e^{J_n(0)} = \sum_{k=0}^{n-1} \frac{1}{k!} J_n(0)^k$. On en déduit que, pour $P \in \mathcal{M}_n(\mathbb{C})$ inversible

$$Pe^{J_n(0)}P^{-1} = P\sum_{k=0}^{n-1} \frac{1}{k!} J_n(0)^k P^{-1} = \sum_{k=0}^{n-1} \frac{1}{k!} PJ_n(0)^k P^{-1} = \sum_{k=0}^{n-1} \frac{1}{k!} (PJ_n(0)P^{-1})^k$$

 $PJ_n(0)P^{-1}$ est nilpotente d'indice n donc cette dernière somme est égale à $e^{PJ_n(0)P^{-1}}$.

Seconde méthode plus générale : L'application de $\mathcal{M}_n(\mathbb{C})$ dans lui même qui à M associe PMP^{-1} est une application linéaire, or $\mathcal{M}_n(\mathbb{C})$ est de dimension finie, donc elle est continue.

Pour tout polynôme Q on a $PQ(M)P^{-1}=Q(PMP^{-1})$, en prenant $Q=\sum_{k=0}^n\frac{1}{k!}X^k$, on obtient le résultat par passage à la limite lorsque n tend vers $+\infty$.

D'après la question précédente $J_n(0) e^{J_n(0)}$ est nilpotente d'indice n. On déduit de la question **5)** que $J_n(0) e^{J_n(0)}$ est semblable à $J_n(0)$. Il existe donc P inversible telle que $PJ_n(0) e^{J_n(0)} P^{-1} = J_n(0)$, et donc $PJ_n(0)P^{-1}P e^{J_n(0)} P^{-1} = J_n(0)$.

D'après ce qui précède on a alors, en posant $\stackrel{\sim}{N}=PJ_n(0)P^{-1},\ Jn(0)=\stackrel{\sim}{N}{\rm e}^{\stackrel{\sim}{N}}$

Soit λ un nombre complexe non nul.

8) Justifier l'existence d'un nombre complexe $\mu \neq -1$ tel que $\lambda = \mu e^{\mu}$ et montrer que l'on peut écrire :

$$J_n(\mu)e^{J_n(\mu)} = \lambda I_n + (\mu + 1)e^{\mu}J_n(0) + (J_n(0))^2p(J_n(0))$$

où p est un polynôme à cœfficients complexes qui dépend de μ .

Correction : D'après la question 3) la fonction g est surjective donc il existe μ tel que $g(\mu) = \lambda$. Comme g(0) = 0 et $\lambda \neq 0$ on a $\mu \neq 0$. De plus μ est un élément de D sa partie imaginaire est strictement positive donc ce n'est pas un réel et donc $\mu \neq -1$.

On a $J_n(\mu) = \mu I_n + J_n(0)$. I_n et $J_n(0)$ commutent donc on a

$$e^{J_n(\mu)} = e^{\mu I_n} e^{J_n(0)} = \left(\sum_{k=0}^{+\infty} \frac{1}{k!} \mu^k I_n\right) e^{J_n(0)} = e^{\mu} I_n e^{J_n(0)} = e^{\mu} e^{J_n(0)}$$

 $J_n(0)$ étant nilpotent d'indice n on a $e^{J_n(0)} = \sum_{k=0}^{n-1} \frac{1}{k!} J_n(0)^k$.

On a alors

$$J_n(\mu) e^{J_n(\mu)} = (\mu I_n + J_n(0)) \left(e^{\mu} \sum_{k=0}^{n-1} \frac{1}{k!} J_n(0)^k \right) = (\mu I_n + J_n(0)) \left(e^{\mu} I_n + e^{\mu} \sum_{k=1}^{n-1} \frac{1}{k!} J_n(0)^k \right)$$

On développe :

$$J_n(\mu) e^{J_n(\mu)} = \mu e^{\mu} I_n + \mu e^{\mu} \sum_{k=1}^{n-1} \frac{1}{k!} J_n(0)^k + e^{\mu} J_n(0) + e^{\mu} \sum_{k=1}^{n-1} \frac{1}{k!} J_n(0)^{k+1}$$

D'où

$$J_n(\mu) e^{J_n(\mu)} = \mu e^{\mu} I_n + \mu e^{\mu} J_n(0) + \mu e^{\mu} \sum_{k=2}^{n-1} \frac{1}{k!} J_n(0)^k + e^{\mu} J_n(0) + e^{\mu} J_n(0)^2 \sum_{k=1}^{n-1} \frac{1}{k!} J_n(0)^{k-1}$$

Et encore

$$J_n(\mu) e^{J_n(\mu)} = \mu e^{\mu} I_n + (\mu + 1) e^{\mu} J_n(0) + J_n(0)^2 \left(\mu e^{\mu} \sum_{k=2}^{n-1} \frac{1}{k!} J_n(0)^{k-2} + e^{\mu} \sum_{k=1}^{n-1} \frac{1}{k!} J_n(0)^{k-1} \right)$$

Et enfin

$$mu e^{\mu} I_n + (\mu + 1) e^{\mu} J_n(0) + J_n(0)^2 e^{\mu} \left(\sum_{k=1}^{n-2} \left(\frac{\mu}{(k+1)!} + \frac{1}{k!} \right) J_n(0)^{k-1} + \frac{1}{(n-1)} J_n(0)^{n-2} \right)$$

On obtient le résultat demandé avec $p = e^{\mu} \left(\sum_{k=1}^{n-2} \left(\frac{\mu}{(k+1)!} + \frac{1}{k!} \right) X^{k-1} + \frac{1}{(n-1)} X^{n-2} \right)$.

9) Montrer que $(\mu+1)e^{\mu}J_n(0)+(J_n(0)^2p(J_n(0))$ est nilpotente d'indice n. En déduire qu'il existe $M\in\mathcal{M}_n(\mathbb{C})$ telle que $J_n(\lambda)=Me^M$.

Correction : Comme $J_n(0)$ commute avec tout polynôme en $J_n(0)$ on a

$$((\mu+1)e^{\mu}J_n(0) + (J_n(0)^2p(J_n(0)))^n = (J_n(0)((\mu+1)e^{\mu}I_n + (J_n(0)p(J_n(0))))^n$$
$$= J_n(0)^n((\mu+1)e^{\mu}I_n + (J_n(0)p(J_n(0)))^n = 0$$

De même on a

$$\left((\mu + 1) e^{\mu} J_n(0) + (J_n(0)^2 p(J_n(0)) \right)^{n-1} = J_n(0)^{n-1} \left((\mu + 1) e^{\mu} I_n + (J_n(0) p(J_n(0)) \right)^{n-1}$$

Comme $J_n(0)^n = 0$, lorsqu'on développe il ne reste que $(\mu + 1) e^{\mu} J_n(0)^{n-1}$ qui est non nulle, car on a aussi $\mu e^{\mu} \neq 0$.

Conclusion: $(\mu + 1)e^{\mu}J_n(0) + (J_n(0)^2p(J_n(0))$ est nilpotente d'indice n.

D'après la question 5) On en déduit l'existence d'une matrice inversible Q telle que $((\mu+1)e^{\mu}J_n(0)+(J_n(0)^2p(J_n(0)))=QJ_n(0)Q^{-1}$.

L'équation de la question 8) s'écrit alors

$$J_n(\mu)e^{J_n(\mu)} = \lambda I_n + QJ_n(0)Q^{-1}$$

Ou encore

$$J_n(\mu)e^{J_n(\mu)} = Q(\lambda I_n + J_n(0))Q^{-1} = QJ_n(\mu)Q^{-1}$$

On pose alors $M = Q^{-1}J_n(\mu)Q$. A l'aide de la méthode de la question 7) on obtient $J_n(\lambda) = Me^M$.

Forme de Jordan d'une matrice nilpotente

Soit $N \in \mathcal{M}_n(\mathbb{C})$ une matrice nilpotente d'ordre p. On suppose dans un premier temps que 1 .

10) Montrer qu'il existe $B \in \mathcal{M}_{p,n-p}(\mathbb{C})$ et $C \in \mathcal{M}_{n-p,n-p}(\mathbb{C})$ telles que N est semblable à la matrice par blocs suivante:

$$A = \left(\begin{array}{c|c} J_p(0) & B \\ \hline O & C \end{array}\right)$$

où O est la matrice nulle de $\mathcal{M}_{n-p,p}(\mathbb{C})$.

Correction: Comme N est nilpotente d'indice p, on a $N^p = 0$ et $N^{p-1} \neq 0$. Il existe alors X une matrice colonne telle que $N^{p-1}X \neq 0$. On utilise la méthode de la question 4) pour construire une famille libre $(N^{p-1}X,\ldots,NX,X)$. On complète alors, par le théorème de la base incomplète, par (X_1,\ldots,X_{n-p}) pour obtenir une base de $\mathcal{M}_{n,1}(\mathbb{C})$.

Dans la base de \mathbb{C}^n associée à $(N^{p-1},\ldots,NX,X,X_1,\ldots,X_{n-p})$, la matrice de l'endomorphisme de \mathbb{C}^n canoniquement associé N est alors de la forme : $\left(\begin{array}{c|c} J_p(0) & B \\ \hline O & C \end{array}\right)$

Donc N est semblable à une telle matrice.

Pour tout $X \in \mathcal{M}_{p,n-p}(\mathbb{C})$, on définit la matrice par blocs T_X suivante :

$$T_X = \left(\begin{array}{c|c} I_p & X \\ \hline O & I_{n-p} \end{array}\right) \in \mathcal{M}_n(\mathbb{C})$$

11) Montrer que T_X est inversible et calculer son inverse. Vérifier que $A'=T_XAT_X^{-1}$ est de la forme :

$$A' = \left(\begin{array}{c|c} J_p(0) & Y \\ \hline O & Z \end{array}\right)$$

où l'on explicitera les matrices $Y \in \mathcal{M}_{p,n-p}(\mathbb{C})$ et $Z \in \mathcal{M}_{n-p,n-p}(\mathbb{C})$.

Correction: la matrice T_X est triangulaire supérieure de coefficients diagonaux non nuls, elle est donc inversible.

Remarque: on peut dire aussi que son déterminant est égal à 1.

Pour $(X,Y) \in \mathcal{M}_{p,n-p}(\mathbb{C})^2$, un calcul par blocs donne $T_XT_Y = T_{X+Y}$. On en déduit que l'inverse de T_X est T_{-X} .

On a alors

$$T_XAT_X^{-1} = T_XAT_{-X} = \begin{pmatrix} I_p & X \\ 0 & I_{n-p} \end{pmatrix} \begin{pmatrix} J_p(0) & B \\ 0 & C \end{pmatrix} \begin{pmatrix} I_p & -X \\ 0 & I_{n-p} \end{pmatrix} = \begin{pmatrix} I_p & X \\ 0 & I_{n-p} \end{pmatrix} \begin{pmatrix} J_p(0) & -J_p(0)X + B \\ 0 & C \end{pmatrix}$$

Et donc
$$T_X A T_X^{-1} = \begin{pmatrix} J_p(0) & -J_p(0)X + B + XC \\ 0 & C \end{pmatrix}$$
.

En posant
$$Z = C$$
 et $Y = -J_p(0)X + B + XC$ on obtient bien $T_X A T_X^{-1} = \begin{pmatrix} J_p(0) & Y \\ 0 & Z \end{pmatrix}$.

12) Montrer que dans l'écriture de A' de la question précédente, on peut choisir $X \in \mathcal{M}_{p,n-p}(\mathbb{C})$ de telle sorte que toutes lignes de Y, à l'exception éventuelle de la dernière, soient nulles. (On pourra noter $X_{(i)}$ la ième ligne de X pour $i \in \{1,...,p\}$ et étudier l'effet sur les lignes de X de la multiplication par $J_p(0)$ dans le produit $J_p(0)X$.)

Correction: En notant A_i la i-ème ligne de la matrice A, la relation $Y = -J_p(0)X + B + XC$ entre matrices, s'écrit : $Y_{(i)} = -X_{(i+1)} + B_{(i)} + X_{(i)}C$ pour tout $i \in [1, p-1]$ et $Y_{(p)} = B_{(p)} + X_{(p)}C$. Ainsi, on choisit la première ligne de X dans $\mathcal{M}_{1,n-p}(\mathbb{C})$, on peut prendre par exemple cette première ligne nulle. Puis on définit par récurrence, $X_{(\ell+1)} = B_{(\ell)} + X_{(\ell)}C$ pour tout ℓ de 1 à p-1. Ainsi, on a défini une matrice X et par choix, toutes les lignes de Y sauf peut-être la dernière, sont nulles.

13) Justifier que A' est nilpotente d'indice p. En déduire que si la matrice X est choisie comme dans la question précédente, la matrice Y est nulle. (On pourra raisonner par l'absurde en étudiant l'effet des endomorphismes associés aux puissances de A' sur les vecteurs de la base canonique de \mathbb{C}^n .)

Correction: Par construction A', A et N sont semblables. On en déduit directement (matrice d'un même endomorphisme nilpotent d'indice p) que A' est nilpotente d'indice p.

Soit g l'endomorphisme de \mathbb{C}^n canoniquement associé à A' et $\mathscr{B}=(e_1,\ldots,e_p,e_{p+1},\ldots,e_n)$ la base canonique de C^n . Soit $i \in [p+1, n]$, posons $vect(e_{p+1}, \dots, e_n) = F$. De la forme de A', on peut poser $f(e_i) = y_i e_p + x$, où $y_i \in \mathbb{C}$ et $x \in F$. On montre alors par récurrence que, pour tout $k \in [1, p-1], f^k(F) \subset vect(e_{p-k+1}, \dots, e_n)$.

On obtient alors $f^{p}(e_{i}) = y_{i}f^{p-1}(e_{p}) + f^{p+1}(x)$, c'est à dire $0 = y_{i}e_{1} + f^{p+1}(x)$, et $f^{p-1}(x) \in vect(e-2, ..., e_{n})$.

$$0 = y_i e_1 + f^{p+1}(x)$$
, et $f^{p-1}(x) \in vect(e-2, \dots, e_n)$

On en déduit que $y_i = 0$ et par conséquent la dernière ligne (y_{p+1}, \dots, y_n) de Y est nulle, par suite Y = 0.

14) En déduire que lorsque $1 \le p \le n$, la matrice nilpotente N est semblable à une matrice diagonale par blocs de la forme :

$$\begin{pmatrix}
J_{p_1}(0) & & & & & & \\
& J_{p_2}(0) & & & & \\
& & & \ddots & & \\
& & & & J_{p_r}(0)
\end{pmatrix}$$

où r et $p_1, ..., p_r$ désignent des entiers naturels non nuls.

Représentation Ae^A dans $\mathcal{M}_n(\mathbb{C})$

Soit $A \in \mathcal{M}_n(\mathbb{C})$. On note $\lambda_1, ..., \lambda_s$ ses valeurs propres complexes distinctes, d'ordre de multiplicité respectifs $\alpha_1,...,\alpha_s$ dans le polynôme caractéristique de A. Soit f l'endomorphisme de \mathbb{C}^n dont la matrice dans la base canonique de \mathbb{C}^n est A et F_i le sous espace vectoriel de \mathbb{C}^n définie par $F_i = \ker((f - \lambda_i)^{\alpha_i})$ pour tout $i \in \{1, ..., s\}$.

15) Montrer que l'espace vectoriel \mathbb{C}^n est la somme directe des espaces F_i . En considérant une base de \mathbb{C}^n adaptée à cette somme directe, montrer que A est semblable à une matrice diagonale par blocs da la forme :

$$\begin{pmatrix} \lambda_1 I_{\alpha_1} + N_1 & & & (0) \\ & \lambda_1 I_{\alpha_2} + N_2 & & \\ & & \ddots & \\ (0) & & & \lambda_s I_{\alpha_s} + N_s \end{pmatrix}$$

où $N_1, ..., N_s$ sont des matrices nilpotentes

16) Montrer que l'application $A \mapsto Ae^A$ de $\mathcal{M}_n(\mathbb{C})$ dans lui même est surjective.