Devoir maison n° 4

MP Clemenceau 2022-23

Vous devez rédiger au minimum la première partie pour le lundi 28 novembre 2022 à 19h

Pour $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} , on note $\mathcal{M}_{n,\ell}(\mathbb{K})$ l'ensemble des matrices à n lignes et ℓ colonnes à coefficients dans \mathbb{K} . Un élément de $\mathcal{M}_{n,\ell}(\mathbb{R})$ sera considéré comme élément de $\mathcal{M}_{n,\ell}(\mathbb{C})$. Dans la suite, on identifie les matrices carrées (respectivement les matrices colonnes) et les endomorphismes (respectivement les vecteurs) canoniquement associés dans \mathbb{C}^n : par exemple, on note par la même lettre une matrice T de $\mathcal{M}_{n,n}(\mathbb{R})$ et l'endomorphisme de \mathbb{C}^n dont T est la matrice dans la base canonique de \mathbb{C}^n . Si $M \in \mathcal{M}_{n,\ell}(\mathbb{K})$ et $x \in \mathbb{K}^{\ell}$, $(Mx)_i$ désigne la i-ième composante du vecteur $Mx \in \mathbb{K}^n$. On note I_n la matrice identité de $\mathcal{M}_{n,n}(\mathbb{C})$.

Pour $x = (x_1, \ldots, x_n) \in \mathbb{K}^n$, on note

$$||x||_1 = \sum_{i=1}^n |x_i| \text{ et } ||M||_1 = \sup_{x \in \mathbb{K}^n \setminus \{0\}} \frac{||Mx||_1}{||x||_1},$$

pour $M \in \mathcal{M}_{n,n}(\mathbb{K})$.

Définitions: Soit M une matrice dans $\mathcal{M}_{n,\ell}(\mathbb{R})$, de coefficients notés $(m_{i,j}, pour 1 \leq i \leq n, 1 \leq j \leq \ell)$. On dit que M est <u>positive</u> (respectivement <u>strictement positive</u>), ce que l'on note $M \geq 0$ (respectivement M > 0), lorsque tous ses coefficients sont positifs (respectivement strictement positifs):

$$\forall (i,j) \in [1,n] \times [1,\ell] \quad m_{i,j} \ge 0 \text{ (resp. } m_{i,j} > 0 \text{)}$$

Pour deux matrices M et N de $\mathcal{M}_{n,\ell}(\mathbb{R})$, on note $M \geq N$ (respectivement M > N) lorsque $M - N \geq 0$ (respectivement M - N > 0).

Si $n = \ell$, une matrice M de $\mathcal{M}_{n,n}(\mathbb{R})$ est dite <u>stochastique</u> lorsqu'elle est positive et que de plus

$$\forall j \in [1, n] \quad \sum_{i=1}^{n} m_{i,j} = 1$$

On définit les ensembles B, B^+ et Σ par :

$$\begin{array}{ll} B &= \{x \in {\rm I\!R}^n/x \geq 0 \ {\rm et} \ x \neq 0\} \\ B^+ &= \{x \in {\rm I\!R}^n/x > 0\} \\ \Sigma &= \{x \in {\rm I\!R}^n/\left\|x\right\|_1 = 1\} \end{array}$$

Nous souhaitons montrer le résultat suivant :

Théorème (Perron-Frobenius) Soit T dans $\mathcal{M}_{n,n}(\mathbb{R})$ stochastique vérifiant $(I_n + T)^{n-1} > 0$. Il existe un vecteur strictement positif x_0 satisfaisant $Tx_0 = x_0$. Toutes les valeurs propres de T sont de module inférieur à 1 et pour tout vecteur y de $\Sigma \cap B$,

$$\lim_{k \to +\infty} \frac{1}{k} \sum_{j=0}^{k-1} T^j y = \frac{x_0}{\|x_0\|_1}$$

Dans tout le problème n est un entier supérieur ou égal à 2.

Les deux parties sont dans une large mesure indépendantes.

Partie I) Un vecteur propre strictement positif

Soit T est un élément positif de $\mathcal{M}_{n,n}(\mathbb{R})$ et $P = (I_n + T)^{n-1}$. On suppose P strictement positive. On note $T = (t_{i,j})_{1 \leq i,j \leq n}$ et $P = (p_{i,j})_{1 \leq i,j \leq n}$.

- 1) Montrer que pour tout $x \in B$, l'ensemble $\Gamma_x = \{\theta \in \mathbb{R}^+ / \theta x \leq Tx\}$ est non vide, fermé et borné. On note $\theta(x)$ son plus grand élément.
- 2) Montrer que pour tout $x \in B$, on peut calculer $\theta(x)$ de la manière suivante :

$$\theta(x) = \min \left\{ \frac{(Tx)_i}{x_i} / 1 \leqslant i \leqslant n \text{ et } x_i \neq 0 \right\}$$

On note θ l'application de B dans \mathbb{R}_+ qui à x associe $\theta(x)$.

- 3) Montrer que pour tout α dans \mathbb{R}_+^* et tout $x \in B$, $\theta(\alpha x) = \theta(x)$.
- **4)** Montrer que $P(B) \subset B^+$.
- 5) Montrer que pour tout $x \in B$, $\theta(Px) \ge \theta(x)$ et $\theta(Px) > 0$.
- **6)** Soit $x \in B$ un vecteur propre de T. Montrer que $\theta(Px) = \theta(x)$.
- 7) Soit $x \in B$ tel que $\theta(Px) = \theta(x)$, montrer que x est un vecteur propre de T pour la valeur propre $\theta(x)$.
- 8) Soit $C = B \cap \Sigma$. Montrer que l'application θ est continue de P(C) dans \mathbb{R} .
- 9) Justifier l'existence de $x_0 \in P(C)$ tel que $\theta(x_0) = \sup_{x \in P(C)} \theta(x)$.
- **10)** Montrer que $\sup_{x \in P(C)} (\theta(x)) \ge \sup_{x \in C} \theta(x)$.
- 11) Montrer que $\sup_{x \in B} \theta(x) = \sup_{x \in C} \theta(x)$.
- **12)** Montrer que $\sup_{x \in C} \theta(x) = \sup_{x \in P(C)} \theta(x)$ et que $\theta(x_0) = \sup_{x \in C} \theta(x)$. On pose $\theta_0 = \theta(x_0)$.
- 13) Montrer que x_0 est un vecteur propre, strictement positif, de T pour la valeur propre θ_0 et que $\theta_0 > 0$.

II) Une méthode d'approximation

On suppose toujours que $P = (I_n + T)^{n-1}$ est <u>strictement positive</u> et on suppose de plus que T est stochastique.

Pour un vecteur $x = (x_1, \ldots, x_n)$ de \mathbb{C}^n , on note x^+ le vecteur $(|x_1|, \ldots, |x_n|)$, où |z| est le module du complexe z. Pour tout entier $k \ge 1$, on pose

$$R_k = \frac{1}{k} \sum_{j=0}^{k-1} T^j.$$

- **14)** Soit $\theta \in \mathbb{C}$ et $x \in \mathbb{C}^n$ un vecteur propre de T pour la valeur propre θ . Montrer que $|\theta| x^+ \leqslant Tx^+$.
- 15) En déduire que $|\theta| \leq \theta_0$.
- **16)** Montrer que $|\theta| \|x^+\|_1 \leqslant \|x^+\|_1$ et en déduire que $|\theta| \leqslant 1$.
- 17) En déduire $\theta_0 = 1$.
- 18) Montrer que pour tout $j \ge 1$, T^j et R_j sont des matrices stochastiques.
- **19)** Établir, pour tout $k \ge 1$, les inégalités suivantes : $\|T^k\|_1 \le 1$ et $\|R_k\|_1 \le 1$.
- **20)** Montrer que pour tout $k \ge 1$, $||TR_k R_k||_1 \le \frac{2}{k}$.
- **21)** Soit $x \in \mathbb{C}^n$, montrer que la suite $(R_k x)_{k \geqslant 1}$ a au moins une valeur d'adhérence.
- **22)** Soit y une valeur d'adhérence de la suite $(R_k x)_{k\geqslant 1}$, montrer que Ty=y et que pour tout $k\geqslant 1$, $R_k y=y$.
- 23) Soit y et z deux valeurs d'adhérence de $(R_k x)_{k\geqslant 1}$, montrer pour tous les entiers m et ℓ , l'identité suivante :

$$y - z = R_{\ell} (R_m x - z) - R_m (R_{\ell} x - y)$$

- **24)** Montrer que la suite $(R_k x)_{k \ge 1}$ a exactement une valeur d'adhérence.
- **25)** Montrer qu'il existe une matrice R telle que, pour tout $x \in \mathbb{C}^n$, $Rx = \lim_{k \to +\infty} R_k x$ et $\lim_{k \to +\infty} \|R_k R\|_1 = 0$.
- **26)** Montrer que T et R commutent.
- **27)** Montrer que RT = R et $R^2 = R$.
- **28)** Caractériser R en fonction de $\ker (T I_n)$ et $\operatorname{Im} (T I_n)$.
- **29)** On admet que $\ker (T I_n)$ est de dimension 1. Pour $x \in B$, expliciter Rx en fonction de $||x||_1$, $||x_0||_1$ et x_0 .

FIN DU PROBLÈME

Ce théorème possède d'innombrables applications. L'une des dernières est son utilisation dans le classement (PageRank) des pages Web effectué par le plus connu des moteurs de recherche.