Correction: Devoir maison n°1

MP Clemenceau 2024-25

pour le samedi 12 octobre 2024 à 12h

Vous devez rédiger au minimum les questions : 1), 2), 5), 7)

Notations et objectifs

• Dans tout ce problème, on désigne par α un nombre réel **positif**, et on se propose d'étudier la fonction f définie par l'intégrale suivante lorsqu'elle est convergente :

$$f(\alpha) = \int_0^{+\infty} \frac{\sin(t)}{t^{\alpha}} dt$$

- On se propose de prouver dans la partie A l'absolue convergence, puis la convergence de l'intégrale $f(\alpha)$, ce qui permet d'obtenir le domaine de définition de f.
- Puis on étudie dans les parties B et C le comportement de f aux voisinages de 0 et de 2.

Partie A — Absolue convergence et convergence de l'intégrale $f(\alpha)$

Dans cette partie, on étudie la convergence de $f(\alpha)$ à l'aide des deux intégrales suivantes :

$$I(\alpha) = \int_0^{\pi} \frac{\sin(t)}{t^{\alpha}} dt$$
 et $J(\alpha) = \int_{\pi}^{+\infty} \frac{\sin(t)}{t^{\alpha}} dt$

1) Etude de la convergence de l'intégrale $I(\alpha)$.

Déterminer les valeurs de α pour lesquelles l'intégrale $I(\alpha)$ est convergente.

Correction: $\sin t \sim t$, donc $\frac{\sin t}{t^{\alpha}} \sim \frac{1}{t^{\alpha-1}}$. La fonction $t \mapsto \frac{\sin t}{t^{\alpha}}$ est continue et positive sur $]0,\pi]$, et l'intégrale de Riemann $\int_0^{\pi} \frac{1}{t^{\alpha}} dt$ converge si, et seulement si, $\alpha - 1 < 1$, donc, par équivalence des fonctions positives,

l'intégrale $I(\alpha)$ converge si, et seulement si $\alpha < 2$

- 2) Etude de l'absolue convergence de l'intégrale $J(\alpha)$.
 - (a) Démontrer que l'intégrale $J(\alpha)$ est absolument convergente si $\alpha > 1$.

Correction : Soit $\alpha > 1$. La fonction $t \mapsto \frac{\sin t}{t^{\alpha}}$ est continue sur $[\pi, +\infty[$ et, pour tout $t \geqslant \pi$, $\left|\frac{\sin t}{t^{\alpha}}\right| \leq \frac{1}{t^{\alpha}}$.

Comme l'intégrale de Riemann $\int_{\pi}^{+\infty} \frac{1}{t^{\alpha}} dt$ converge, par comparaison des fonctions positives, l'intégrale $J(\alpha)$ est absolument convergente si $\alpha > 1$.

1

(b) Déterminer, pour tout entier naturel k, la valeur de l'intégrale $\int_{k\pi}^{(k+1)\pi} |\sin(t)| dt$.

Correction: Pour tout $t \in \mathbb{R}$, $|\sin(t+\pi)| = |-\sin t| = |\sin t|$, ce qui signifie que la fonction $t \mapsto |\sin t|$ est π -périodique.

Soit $k \in \mathbb{N}$. L'application $u \mapsto t = u + k\pi$ est de classe \mathscr{C}^1 sur $[0, \pi]$ vers $[k\pi, (k+1)\pi]$. Le théorème de changement de variable donne :

$$\int_{k\pi}^{(k+1)\pi} |\sin t| \, \mathrm{d}t = \int_0^\pi |\sin(u+k\pi)| \, \mathrm{d}u = \int_0^\pi \sin u \, \mathrm{d}u = [-\cos u]_0^\pi = 1 - (-1) = 2$$

Donc, pour tout
$$k \in \mathbb{N}$$
, $\int_{k\pi}^{(k+1)\pi} |\sin t| dt = 2$.

(c) Démontrer l'encadrement suivant, pour tout réel $\alpha \ge 0$ et tout entier $k \ge 1$:

$$\frac{2}{(k+1)^{\alpha}\pi^{\alpha}} \leqslant \int_{k\pi}^{(k+1)\pi} \frac{|\sin(t)|}{t^{\alpha}} \, \mathrm{d}t \leqslant \frac{2}{k^{\alpha}\pi^{\alpha}}.$$

Correction : Soit $\alpha \geqslant 0$ et $k \geqslant 1$. Comme la fonction $t \mapsto \frac{1}{t^{\alpha}}$ est continue et décroissante sur $[k\pi, (k+1)\pi]$, pour tout $t \in [k\pi, (k+1)\pi]$, $\frac{1}{(k+1)^{\alpha}\pi^{\alpha}} \leqslant \frac{1}{t^{\alpha}} \leqslant \frac{1}{k^{\alpha}\pi^{\alpha}}$, et donc

$$\frac{|\sin t|}{(k+1)^{\alpha}\pi^{\alpha}} \leqslant \frac{|\sin t|}{t^{\alpha}} \leqslant \frac{|\sin t|}{k^{\alpha}\pi^{\alpha}}.$$
Per croissance de l'intégrale
$$\frac{1}{n!}$$

 $\begin{aligned} & \text{Par croissance de l'intégrale, } \frac{1}{(k+1)^{\alpha}\pi^{\alpha}} \int_{k\pi}^{(k+1)\pi} |\sin t| \, \mathrm{d}t \leqslant \int_{k\pi}^{(k+1)\pi} \frac{|\sin t|}{t^{\alpha}} \, \mathrm{d}t \leqslant \frac{1}{k^{\alpha}\pi^{\alpha}} \int_{k\pi}^{(k+1)\pi} |\sin t| \, \mathrm{d}t, \\ & \text{Comme } \int_{k\pi}^{(k+1)\pi} |\sin t| \, \mathrm{d}t = 2, \text{ on obtient } : \boxed{\frac{2}{(k+1)^{\alpha}\pi^{\alpha}}} \leqslant \int_{k\pi}^{(k+1)\pi} \frac{|\sin t|}{t^{\alpha}} \, \mathrm{d}t \leqslant \frac{2}{k^{\alpha}\pi^{\alpha}} \boxed{.} \end{aligned}$

(d) Préciser pour quelles valeurs du réel α , l'intégrale $J(\alpha)$ est absolument convergente

Correction: On somme pour k = 1 à n - 1 et on obtient:

$$\frac{2}{\pi^{\alpha}} \sum_{k=1}^{n-1} \frac{1}{(k+1)^{\alpha}} \leqslant \int_{\pi}^{n\pi} \frac{|\sin t|}{t^{\alpha}} dt \leqslant \frac{2}{\pi^{\alpha}} \sum_{k=1}^{n-1} \frac{1}{k^{\alpha}}, \text{ c'est-à-dire} \boxed{\frac{2}{\pi^{\alpha}} \sum_{k=2}^{n} \frac{1}{k^{\alpha}} \leqslant \int_{\pi}^{n\pi} \frac{|\sin t|}{t^{\alpha}} dt \leqslant \frac{2}{\pi^{\alpha}} \sum_{k=1}^{n-1} \frac{1}{k^{\alpha}}}$$

- Si $\alpha \leq 1$, alors la série de Riemann $\sum \frac{1}{n^{\alpha}}$ diverge et donc la suite de ses sommes partielles tend vers $+\infty$. La minoration précédente donne $\int_{-\infty}^{n\pi} \frac{|\sin t|}{t^{\alpha}} dt \xrightarrow[n\to\infty]{} +\infty$, ce qui prouve la divergence de l'intégrale $J(\alpha)$.
- Si $\alpha > 1$, alors l'intégrale $J(\alpha)$ converge absolument d'après la question 2a.

En conclusion, l'intégrale $J(\alpha)$ est absolument convergente si, et seulement si, $\alpha > 1$

- 3) Etude de la convergence de l'intégrale $J(\alpha)$.
 - (a) L'intégrale J(0) est-elle convergente?

Correction : Pour tout $x \ge \pi$, $\int_{\pi}^{x} \sin(t) dt = [-\cos t]_{\pi}^{x} = -\cos x - 1$ et cette quantité n'a pas de limite lorsque $x \to +\infty$. Donc l'intégrale J(0) est divergente

(b) Prouver la convergence de l'intégrale $J(\alpha)$ si $\alpha > 0$.

Correction : Soit $\alpha > 0$. Pour tout $t \ge \pi$, $\left| \frac{\cos t}{t^{\alpha+1}} \right| \le \frac{1}{t^{\alpha+1}}$ et $t \mapsto \frac{1}{t^{\alpha+1}}$ est intégrable, d'après Riemann, sur $[\pi, +\infty[$.

Donc, par comparaison des fonctions positives, l'intégrale $\int_{\pi}^{+\infty} \frac{\cos t}{t^{\alpha+1}} dt$ est absolument convergente

Soit $x \geq \pi$. On procède à une intégration par parties en posant $u(t) = -\cos t$ et $v(t) = \frac{1}{t^{\alpha}}$. Les fonctions u et v sont de classe \mathcal{C}^1 sur le segment $[\pi, x]$ avec $u'(t) = \sin t$ et $v'(t) = -\frac{\alpha}{t^{\alpha+1}}$. Pour tout $t \geq \pi$, $|u(t)v(t)| = \left|\frac{\cos t}{t^{\alpha}}\right| \leq \frac{1}{t^{\alpha}} \xrightarrow[t \to \infty]{} 0$ et l'intégrale $\int_{\pi}^{+\infty} \frac{\cos(t)}{t^{\alpha+1}} \, dt$ converge.

Le théorème d'intégration par parties assure alors $\left| \text{ la convergence de l'intégrale } J(\alpha) = \int_{\pi}^{+\infty} \frac{\sin(t)}{t^{\alpha}} dt \right|$

4) Domaine de définition de la fonction f.

En déduire le domaine de définition de la fonction f ainsi que le domaine de convergence absolue de l'intégrale définissant $f(\alpha)$.

Correction: L'intégrale $f(\alpha)$ converge si, et seulement si, les intégrales $I(\alpha)$ et $J(\alpha)$ convergent, c'est-à-dire si, et seulement si $\alpha < 2$ et $\alpha > 0$, i.e $\alpha \in]0,2[$. Donc le domaine de définition de la fonction f est]0,2[L'intégrale définissant $f(\alpha)$ converge absolument si, et seulement si, les intégrales $I(\alpha)$ et $J(\alpha)$ convergent absolument. Comme la fonction $t\mapsto \frac{\sin(t)}{t^{\alpha}}$ est positive sur $]0,\pi]$, l'intégrale $I(\alpha)$ est absolument convergente si, et seulement si, elle est convergente. Donc l'intégrale $f(\alpha)$ est absolument convergente si, et seulement si $\alpha < 2$ et $\alpha > 1$. Le domaine de convergence absolue de l'intégrale définissant $f(\alpha)$ est]1,2[

Dans toute la suite, on suppose que le paramètre α appartient à ce domaine de définition.

Partie B — Etude de $f(\alpha)$ quand α tend vers 0

On se propose, dans cette partie, d'étudier $f(\alpha)$ lorsque α tend vers 0, et on écrit, à cet effet :

$$f(\alpha) = \int_0^{+\infty} \frac{\sin(t)}{t^{\alpha}} dt = \int_0^{\pi/2} \frac{\sin(t)}{t^{\alpha}} dt + \int_{\pi/2}^{+\infty} \frac{\sin(t)}{t^{\alpha}} dt$$

- 5) On pose $K(\alpha) = \int_0^{\pi/2} \frac{\sin(t)}{t^{\alpha}} dt$, pour $\alpha \in]0,1]$.
 - (a) Montrer que:

$$K(\alpha) = \left(\frac{2}{\pi}\right)^{\alpha} + \alpha \int_0^{\pi/2} \frac{1 - \cos(t)}{t^{\alpha+1}} dt$$

Correction: On fait une intégration par parties en posant $u(t) = 1 - \cos t$ et $v(t) = \frac{1}{t^{\alpha}}$. Les fonctions

u et v sont de classe C^1 sur $]0, \pi/2]$ avec $u'(t) = \sin t$ et $v'(t) = -\frac{\alpha}{t^{\alpha+1}}$. Comme $u(t)v(t) = \frac{1-\cos t}{t^{\alpha}} \sim \frac{t^{2-\alpha}}{2} \xrightarrow[t \to 0]{} 0$, puisque $2-\alpha > 0$, et que $K(\alpha)$ est une intégrale convergente d'après la partie I, on peut intégrer par parties :

$$K(\alpha) = \left[\frac{1 - \cos t}{t^{\alpha}} \right]_0^{\pi/2} + \alpha \int_0^{\pi/2} \frac{1 - \cos t}{t^{\alpha + 1}} dt = \frac{1 - 0}{(\pi/2)^{\alpha}} - 0 + \alpha \int_0^{\pi/2} \frac{1 - \cos t}{t^{\alpha + 1}} dt$$

Donc
$$K(\alpha) = \left(\frac{2}{\pi}\right)^{\alpha} + \alpha \int_0^{\pi/2} \frac{1-\cos t}{t^{\alpha+1}} dt$$

(b) Montrer que:

$$0 \leqslant \int_0^{\pi/2} \frac{1 - \cos(t)}{t^{\alpha + 1}} dt \leqslant \int_0^1 \frac{1 - \cos(t)}{t^2} dt + \int_1^{\pi/2} (1 - \cos(t)) dt$$

Correction:

- La fonction $t \mapsto \frac{1-\cos t}{t^{\alpha+1}}$ est positive sur $[0,\pi/2]$ donc $\int_0^{\pi/2} \frac{1-\cos t}{t^{\alpha+1}} dt \ge 0$.
- $\alpha+1\leq 2$ donc, pour tout $t\in]0,1],\ \frac{1}{t^{\alpha+1}}\leq \frac{1}{t^2}.$ Comme, pour tout $t\in]0,1],\ 1-\cos t\geq 0, \int_0^1 \frac{1-\cos t}{t^{\alpha+1}}\,dt\leqslant \int_0^1 \frac{1-\cos t}{t^2}\,dt$, par croissance de l'intégrale.
- $\alpha+1\geq 0$ donc, pour tout $t\in [1,\pi/2], \ \frac{1}{t^{\alpha+1}}\leq 1$. Comme, pour tout $t\in [1,\pi/2], \ 1-\cos t\geq 0, \ \int_1^{\pi/2} \frac{1-\cos t}{t^{\alpha+1}} \, dt \leqslant \int_1^{\pi/2} (1-\cos t) \, dt$, par croissance de

D'autre part, la relation de Chasles donne $K(\alpha) = \int_0^1 \frac{1-\cos t}{t^{\alpha+1}} \ dt + \int_1^{\pi/2} \frac{1-\cos t}{t^{\alpha+1}} \ dt$, ce qui permet de conclure:

$$0 \leqslant \int_0^{\pi/2} \frac{1 - \cos(t)}{t^{\alpha + 1}} dt \leqslant \int_0^1 \frac{1 - \cos(t)}{t^2} dt + \int_1^{\pi/2} (1 - \cos(t)) dt$$

(c) En déduire la limite de $K(\alpha)$ lorsque α tend vers 0.

Correction : Notons M le majorant (indépendant de α) de l'encadrement précédent. Alors :

$$\forall \alpha \in]0,1], \quad \left(\frac{2}{\pi}\right)^{\alpha} \leq K(\alpha) \leq \left(\frac{2}{\pi}\right)^{\alpha} + \alpha M$$

Comme $\left(\frac{2}{\pi}\right)^{\alpha} = e^{\alpha \ln(2/\pi)} \xrightarrow[\alpha \to 0]{} e^0 = 1$ et $\alpha M \xrightarrow[\alpha \to 0]{} 0$, le théorème des gendarmes permet de conclure :

- 6) Limite de l'intégrale $\int_{\pi/2}^{+\infty} \frac{\sin(t)}{t^{\alpha}} dt$.
 - (a) Justifier l'égalité suivante :

$$\int_{\pi/2}^{+\infty} \frac{\sin(t)}{t^{\alpha}} dt = \frac{\alpha}{(\pi/2)^{\alpha+1}} - \alpha(\alpha+1) \int_{\pi/2}^{+\infty} \frac{\sin(t)}{t^{\alpha+2}} dt$$

Correction : On pose $u(t) = -\cos t$ et $v(t) = \frac{1}{t^{\alpha}}$. Les fonctions u et v sont de classe \mathcal{C}^1 sur $[\pi/2, +\infty[$ avec $u'(t) = \sin t$ et $v'(t) = -\frac{\alpha}{t^{\alpha+1}}$. Comme u est bornée et $v(t) \underset{t \to +\infty}{\longrightarrow} 0$, on a $u(t)v(t) \underset{t \to +\infty}{\longrightarrow} 0$, ce qui rend légitime une première intégration par parties :

$$\int_{\pi/2}^{+\infty} \frac{\sin(t)}{t^{\alpha}} dt = 0 - 0 - \alpha \int_{\pi/2}^{+\infty} \frac{\cos t}{t^{\alpha+1}} dt = -\alpha \int_{\pi/2}^{+\infty} \frac{\cos t}{t^{\alpha+1}} dt$$

On pose à nouveau $x(t)=\sin t$ et $y(t)=\frac{1}{t^{\alpha+1}}$. Les fonctions x et y sont de classe \mathcal{C}^1 sur $[\pi/2,+\infty[$ avec $x'(t)=\cos t$ et $y'(t)=-\frac{\alpha+1}{t^{\alpha+2}}$. Comme x est bornée et $y(t)\underset{t\to+\infty}{\longrightarrow}0$, on a $x(t)y(t)\underset{t\to+\infty}{\longrightarrow}0$, ce qui légitime une seconde intégration par parties :

$$\int_{\pi/2}^{+\infty} \frac{\sin(t)}{t^{\alpha}} dt = -\alpha \left(0 - \frac{1}{(\pi/2)^{\alpha+1}} + (\alpha+1) \int_{\pi/2}^{+\infty} \frac{\sin t}{t^{\alpha+2}} dt \right)$$

On a obtenu : $\int_{\pi/2}^{+\infty} \frac{\sin(t)}{t^{\alpha}} dt = \frac{\alpha}{(\pi/2)^{\alpha+1}} - \alpha(\alpha+1) \int_{\pi/2}^{+\infty} \frac{\sin t}{t^{\alpha+2}} dt$

(b) Déterminer la limite de $\alpha(\alpha+1)$ $\int_{\pi/2}^{+\infty} \frac{\sin(t)}{t^{\alpha+2}} dt$, puis de $\int_{\pi/2}^{+\infty} \frac{\sin(t)}{t^{\alpha}} dt$ quand α tend vers 0.

Correction:

• L'inégalité triangulaire et la croissance de l'intégrale donnent :

$$\left| \alpha(\alpha+1) \int_{\pi/2}^{+\infty} \frac{\sin t}{t^{\alpha+2}} dt \right| \le \alpha(\alpha+1) \int_{\pi/2}^{+\infty} \frac{|\sin t|}{t^{\alpha+2}}, dt \le \alpha(\alpha+1) \int_{\pi/2}^{+\infty} \frac{dt}{t^{\alpha+2}}$$

et le dernier membre est égal à $\alpha(\alpha+1)\left[-\frac{1}{(\alpha+1)t^{\alpha+1}}\right]_{\pi/2}^{+\infty} = \frac{\alpha}{(\pi/2)^{\alpha+1}}$ Comme $\frac{\alpha}{(\pi/2)^{\alpha+1}} \xrightarrow[\alpha \to 0]{} 0$, on conclut, par le théorème d'encadrement, que $\alpha(\alpha+1)\int_{\pi/2}^{+\infty} \frac{\sin t}{t^{\alpha+2}} dt \xrightarrow[\alpha \to 0]{} 0$.

- D'après la question précédente, comme $\frac{\alpha}{(\pi/2)^{\alpha+1}} \xrightarrow[\alpha \to 0]{} 0$, on conclut que $\int_{\pi/2}^{+\infty} \frac{\sin(t)}{t^{\alpha}} dt \xrightarrow[\alpha \to 0]{} 0$
- (c) En déduire la limite de $f(\alpha)$ lorsque α tend vers 0.

Correction: Par opérations, $f(\alpha)$ admet une limite finie quand $\alpha \to 0$ égale à 1 + 0 = 1

Partie C — Etude de $f(\alpha)$ quand α tend vers 2

- 7) Une autre expression de la fonction f.
 - (a) Démontrer la convergence de l'intégrale suivante pour $0 < \alpha < 2$:

$$\int_0^{+\infty} \frac{1 - \cos(t)}{t^{\alpha + 1}} \, \mathrm{d}t$$

Correction : Soit $\alpha \in]0,2[$. La fonction $h:t\mapsto \frac{1-\cos t}{t^{\alpha+1}}$ est continue et positive sur $]0,+\infty[$ et :

• $h(t) \underset{t \to 0}{\sim} \frac{t^2/2}{t^{\alpha+1}} = \frac{1}{2t^{\alpha-1}}$ qui est intégrable sur]0,1] d'après Riemann, puisque $\alpha-1 < 1$.

4

• Pour tout $t \ge 1$, $h(t) \le \frac{2}{t^{\alpha+1}}$ qui est intégrable sur $[1, +\infty[$ d'après Riemann, puisque $\alpha+1 > 1$.

Donc l'intégrale $\int_0^{+\infty} \frac{1-\cos(t)}{t^{\alpha+1}} dt$ converge si $0 < \alpha < 2$

(b) Etablir que, si $0 < \alpha < 2$:

$$f(\alpha) = \alpha \int_0^{+\infty} \frac{1 - \cos(t)}{t^{\alpha + 1}} dt$$

Correction : Les fonctions $u: t \mapsto 1-\cos t$ et $v: t \mapsto \frac{1}{t^{\alpha}}$ sont de classe \mathcal{C}^1 sur $]0, +\infty[$ avec $u': t \mapsto \sin t$ et $v': t \mapsto -\frac{\alpha}{t^{\alpha+1}}$ et :

- $u(t)v(t) = \frac{1-\cos t}{t^{\alpha}} \underset{t\to 0}{\sim} \frac{t^2/2}{t^{\alpha}} = \frac{t^{2-\alpha}}{2} \xrightarrow[t\to 0]{} 0$, puisque $2-\alpha > 0$.
- $t \mapsto 1 \cos t$ est bornée, donc $u(t)v(t) = O(\frac{1}{t^{\alpha}}) \xrightarrow[t \to +\infty]{} 0$, puisque $\alpha > 0$.

Comme l'intégrale $f(\alpha)$ converge et que le produit uv admet des limites finies aux bornes de $]0,+\infty[$, on peut intégrer par parties :

$$f(\alpha) = 0 - 0 + \alpha \int_0^{+\infty} \frac{1 - \cos t}{t^{\alpha + 1}} dt$$

On a obtenu : $\boxed{\text{pour } 0 < \alpha < 2, \, f(\alpha) = \alpha \int_0^{+\infty} \frac{1-\cos t}{t^{\alpha+1}} \, dt}$

(c) En déduire que la fonction f est à valeurs strictement positives sur [0,2].

Correction : Comme la fonction $t\mapsto \frac{1-\cos t}{t^{\alpha+1}}$ est positive sur $]0,+\infty[$ et $\alpha>0$, par positivite de l'intégrale, f est positive sur]0,2[. Si f s'annulait en $\alpha\in]0,2[$, alors la fonction continue et positive $t\mapsto \frac{1-\cos t}{t^{\alpha+1}}$ serait d'intégrale nulle, donc identiquement nulle sur $]0,+\infty[$, ce qui n'est pas le cas. Donc f est à valeurs strictement positives sur]0,2[

8) Limite de $f(\alpha)$ quand α tend vers 2.

On considère la fonction auxiliaire φ définie sur \mathbb{R}^* par $\varphi(t) = \frac{1 - \cos(t)}{t^2}$.

(a) Montrer que φ est prolongeable en une fonction continue sur \mathbb{R} . On notera encore φ son prolongement.

Correction: La fonction φ est continue en tout point de $\mathbb{R} \setminus \{0\}$ et $\varphi(t) \underset{t \to 0}{\sim} \frac{t^2/2}{t^2} = \frac{1}{2}$.

Donc elle est prolongeable en une fonction continue sur IR, en posant $\varphi(0) = \frac{1}{2}$.

(b) Montrer que la fonction φ admet sur $[0,\pi]$ un minimum strictement positif noté μ (qu'on ne demande pas d'expliciter).

Correction: Pour tout $t \in]0,\pi]$, $\cos t < 1$, donc φ est strictement positive sur $[0,\pi]$ et, $\varphi(0) = \frac{1}{2} > 0$. Par conséquent φ est strictement positive sur $[0, \pi]$.

Etant continue sur le segment $[0,\pi]$, la fonction φ est bornée et atteint ses bornes sur $[0,\pi]$, donc φ admet sur $[0,\pi]$ un minimum $\mu>0$ car la fonction φ est strictement positive.

(c) Etablir les inégalités suivantes, pour $0 < \alpha < 2$:

$$f(\alpha) \geqslant \alpha \int_0^{\pi} \frac{1 - \cos(t)}{t^{\alpha + 1}} dt \geqslant \alpha \mu \frac{\pi^{2 - \alpha}}{2 - \alpha}$$

Correction: Comme $t \mapsto \frac{1-\cos t}{t^{\alpha+1}}$ est positive sur $]0, +\infty[$, d'après la relation de Chasles et la croissance de l'intégrale :

$$f(\alpha) = \alpha \int_0^{+\infty} \frac{1 - \cos(t)}{t^{\alpha + 1}} dt \ge \alpha \int_0^{\pi} \frac{1 - \cos(t)}{t^{\alpha + 1}} dt = \alpha \int_0^{\pi} \frac{\varphi(t)}{t^{\alpha - 1}} dt \ge \alpha \mu \left[\frac{t^{2 - \alpha}}{2 - \alpha} \right]_0^{\pi} = \alpha \mu \frac{\pi^{2 - \alpha}}{2 - \alpha}$$

On a obtenu, pour $0 < \alpha < 2$, $f(\alpha) \geqslant \alpha \int_0^{\pi} \frac{1 - \cos(t)}{t^{\alpha + 1}} dt \geqslant \alpha \mu^{\frac{\pi^{2 - \alpha}}{2 - \alpha}}$

(d) En déduire la limite de $f(\alpha)$ quand α tend vers 2 par valeurs inférieures.

Correction: $\alpha\mu^{\frac{2^{2-\alpha}}{2-\alpha}} = \alpha\mu^{\frac{e^{(2-\alpha)\ln\pi}}{2-\alpha}} \sim \frac{2\mu}{\alpha \to 2^{-}} + \infty$ donc, par minoration, $f(\alpha) \xrightarrow[\alpha \to 2^{-}]{} + \infty$.

5